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Without reference to the fossil record, our ability to predict future consequences of ecological

change is limited by the length of the time over which we can perform ecological experiments or at

most the period of time over which ecologists have collected historical data. The longest continuous

records go back only hundreds of years, supplemented by anecdotal information from earlier historical

times. In order to describe the past or make predictions about the future beyond that range, we must

compare ecological data derived from modern and fossil ecosystems. This dissertation represents an

attempt to bridge the gap between terrestrial plant ecology and paleoecology by providing a simple

method for numerically representing and characterizing forests (both fossil and modern). This allows

identification of large scale patterns in time and space: temporal dynamics happening on an order

of a thousand years or longer and spatial patterning ranging from an order of a kilometer up to

biogeographical (continental) scales. For practical reasons, the examination is restricted to forest

ecosystems, which have been some of the most important ecosystems on the earth since the Late

Cretaceous and which constitute the majority of the plant fossil record since that time.

Specifically, in this dissertation I propose and test the thesis that semi-quantitative descriptions

of the leaf architectural characteristics of forest floras allow direct comparison of fossil and modern

forests on functional grounds that bypass taxonomic ambiguity in the fossil record. A corollary is

that such descriptions provide a way of identifying large scale patterns and trends in the past and

therefore making testable predictions about the future evolution of plant ecosystems.

Discounting anthropogenic changes, the landscapes in which we live are largely created by plant

ecosystems. Modern ecologists can only see a brief clip of the moving picture of landscape patterns

through time; improved diachronic paleobotanical data would permit a showing of the entire film reel,

albeit at lower resolution. The eco-morphological ordination of ancient floras in a modern framework

has the potential to provide a general method of paleoecological analysis that is independent of and

therefore comparable with paleoecological inferences made from sedimentological or phylogenetic

data.
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Author’s Preface

The formal structure of a dissertation has prevented the addition of some comments of a more

general and perhaps unscientific nature. If my experiences are typical, doctoral students are often

‘fair and young when in hope they began that long journey’. This dissertation is neither as complete

nor as conclusive as I originally intended it to be. Nevertheless, I hope that it provides enough

thought and data to be either interesting or useful—possibly even both—as a starting point for

further examination of an interesting set of problems.

One of the problems with which I have been faced is that there are too many data to show.

Thus I have been caught between the Scylla of cherry-picking and the Charybdis of confusing the

reader by presenting too much information represented in too many different ways. This superfluity

of data seems to me a symptom of changes recently induced in the field of paleontology. I have tried

to treat it as a challenge to which it is possible to rise.

Although it is not explicitly discussed, an important aspect of this dissertation is its reliance on

data analysis using a computer scripting language, in this case R. If Charlemagne is apocryphally

supposed to have equated having a second language with possessing a second soul, perhaps learning

a computer programming language is like being possessed by a demon. In the process of analyzing

the data for this dissertation I have become thoroughly convinced of the value of dynamical data

analysis via scripting. The power and flexibility of analyzing data using a scripting language can

also, however, be defects: they allow complex manipulation and elaborate graphical displays that can

be very difficult for readers to understand at first glance. I have tried to explain my methods fully,

but like so many such things, the only way for the reader to understand the results may ultimately

be to replicate them. One advantage of data analysis using a scripting language is that given the

data in appendix A and the scripts in appendix B, virtually all the results discussed in the text can

in theory be replicated by the reader. Unfortunately, as is frequently the case, it would not be easy

in practice to perform this simple theoretical exercise. Most of the blame for that is mine: since I

began from scratch six years ago and have learned to program as I went along, many of my earlier

results went undocumented. Nevertheless in the interests of full disclosure I have attached the data

files and scripts as appendices in all their complexity.

As will be apparent, I have used the first person singular freely when it seemed to be warranted.

Some of the figures benefit greatly from being printed at larger sizes, so in certain cases I have

replaced the in-text figure with a larger fold-out plate at the end of the dissertation.
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1 Introduction

Modern ecology has focused primarily on dynamics of competition and physiological change at short

temporal scales. Therefore our ability to predict future consequences of ecological change is limited

by the length of the time-series collected by modern ecologists. The fossil record, on the other

hand, contains data about large scale differences in the worldwide distribution of plants that can

potentially put modern ecological issues into temporal perspective, a perspective that is increasingly

recognized as important (Rees et al. 2001). Progress in describing ecological change through time

has been made for marine invertebrate ecosystems: initially as early as the 1950s (Ladd 1957),

most influentially in the work of the Chicago School (Sepkoski et al. 1981) and most recently in the

emerging field of ‘evolutionary paleoecology’ (Allmon and Bottjer 2001). The advances in marine

paleoecology may be due partially to the generally better preservation of animals with mineralized

skeletons in marine environments: a shell bed in the fossil record provides a relatively good record

of the living molluscan community that produced it. Terrestrial ecosystems, however, are generally

more biased by taphonomic processes and selective preservation. Terrestrial plant paleoecology,

therefore, has been largely descriptive (Behrensmeyer et al. 1992); that is, there has been little

success in using models of ecological process to guide description of ancient communities. In broad

terms, this dissertation attempts to link terrestrial plant ecology with paleoecology by providing

a method for semi-quantitative description of fossil and modern angiosperm forests allowing us to

identify large scale patterns in time and space—temporal dynamics happening on an order of a

millennium or longer and spatial patterning up to continental scales. The average accumulation rate

of a stratigraphic bed in terrestrial environments provides our smallest general time unit and the

forest stand or fossil collection locality provides the smallest unit of spatial analysis. Shorter time

scales and smaller areas generally can not be resolved in the geological record and are therefore not

the subject of this research. For practical reasons it is restricted to angiosperm forest ecosystems.

These have been some of the most important ecosystems on the earth since the Late Cretaceous and

constitute the vast majority of the plant fossil record since that time.

As one way to bridge the gap between plant ecology and paleoecology, this dissertation offers a

new method for the ecological analysis of fossil plant ecosystems, which I am provisionally calling

‘leaf ecophenetics’ because it depend on the phenetic or algorithmic classification of plant ecosystems

based on quantitative descriptions of their leaves. Chapter 2 explains and develops this methodology

in some detail. In this introductory chapter, I provide a brief summary of existing methods of plant

paleoecology, introduce leaf ecophenetics in section 1.2, and summarize the structure and content of

the following chapters.

An explicitly hypothetico-deductive framework does not seem obviously applicable in a disserta-
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tion like this one, focussed on developing a new method rather than applying a known method to

an unresolved question. Methodological development, however, can also be seen as testing: in this

case, testing whether semi-quantitative descriptions of the leaf architectural characteristics of forest

floras (such as are described in chapter 2) allow direct comparison of fossil and modern forests on

functional grounds that bypass taxonomic ambiguity in the fossil record. This thesis, I believe, can

easily be demonstrated for certain cases as is done in chapter 2. The real difficulty is in showing

that such a comparison is useful and ecologically informative. Therefore the bulk of the dissertation

(chapters 3–6) is devoted to illustrating broad applications of the method as the best evidence for

its utility.

1.1 Existing Methods of Plant Paleoecology

Before describing the method being developed in this dissertation, I should provide a brief survey

of the existing alternatives. Further detail can be found in Krassilov (1975), DiMichele and Wing

(1988), and Dodd and Stanton (1990). Geochemical methods and modeling are included for the

sake of completeness, but most biogeochemical models and isotopic proxies are paleoclimatological

rather than paleoecological in general intent. This is an important distinction that will reappear

in chapter 2: paleoclimatology is concerned with biological processes only insofar as they reveal

what characteristics of fossils will make good proxies for ancient climates; paleoecology is relatively

uninterested in the historical description of ancient climates per se, instead being concerned with the

biological processes that tend to occur under given situations. To the ecologist, paleoclimates are

interesting because they reveal regularities in biological response to extrinsic forces; not simply to

document, for instance, when in the past it was hot and when it was cold. The following hierarchical

list gives a classification (in rough chronological order) of the methods of paleoecological analysis

that have been widely applied to fossil plant assemblages.

1. Nearest living relative approach ‘NLR approach’ (see discussion below)

(a) Single taxon

i. Weak phylogenetic inference (de Queirioz and Gautier 1992)

ii. Strong (justified) phylogenetic inference or ‘bracketing’ (Witmer 1995)

(b) Multiple taxon or ‘coexistence approach’ (Mosbrugger and Utescher 1997)

i. Weak phylogenetic inference

ii. Strong phylogenetic inference

2. Sedimentology (see discussion below)
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(a) Facies analysis (Crosby 1972; Gall 1983; Miall 1996)

(b) Paleosol interpretation (Retallack and Germán-Heins 1994)

i. Pedogenic carbonate horizon analysis (Royer 1999)

3. Ecomorphology or Functional Ecology (see discussion below)

(a) Leaf Physiognomy Bailey and Sinnott (1915)

i. Univariate models (Leaf Margin Analysis, LMA) (Wilf 1997)

ii. Multivariate models

A. Multiple Linear Regresssion (Wing and Greenwood 1993; Wiemann et al. 1998a)

B. Climate Leaf Analysis Multivariate Program (CLAMP) (Wolfe 1993)

C. Digital Leaf Physiognomy (Huff et al. 2003)

(b) Wood Physiognomy (Wheeler and Baas 1993)

(c) Leaf Ecophenetics (Green and Hickey 2005; Green 2006)

4. Geochemistry, e.g. light stable isotopes from soil carbonates

5. Modeling, e.g. global circulation models, weathering models (Berner and Kothavala 2001)

1.1.1 ‘Nearest living relative’ and related approaches

The development of methods for paleoecological analysis began implicitly early in paleobotany with

what is now called the nearest living relative approach or NLR. In its current form, the nearest living

relative approach consists of a more-or-less rigorous phylogenetic analysis of each plant fossil from a

particular collection locality. The nearest living relative of each fossil taxon is recorded along with

the range of environments that it currently inhabits. It is then assumed that the fossil taxon has

inhabited an environment within the range in which its nearest living relative is observed. When a

number of fossil taxa are found autochthonously deposited in the same locality, the environmental

ranges given by each of their nearest living relatives can be intersected in order to increase precision.

This is called the coexistence approach by Mosbrugger and Utescher (1997). In the list above, I

distinguish strong and weak phylogenetic inference. This is my distinction, based on the difference

illustrated in figure 1.1 between justified and unjustified phylogenetic inference (de Queirioz and

Gautier 1992) or bracketing (Witmer 1995).

If taxon A, the nearest living relative of fossil taxon X, has character 1 then ceteris paribus it is

reasonable to assume that X also shares character 1. This, however, is the weakest possible type of

phylogenetic inference because it depends both on the fact that A and X really are sister taxa and
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A	 B	 C	 O

X

A	 X	 B	 C	 O

Phylogeny Cladogram

Figure 1.1: Theoretical phylogeny (historical relationships) and cladogram (abstracted

branching order) of living taxa A, B, C, outgroup O and fossil taxon X to illustrate levels

of phylogenetic inference.

on the assumption that 1 is a derived character. If B also has character 1, then a bracket is present

and the phylogenetic inference can be considered justified, i.e. stronger evidence, because if the

phylogeny is correct it is parsimonious to consider the character derived. If C also shares character

1, then the evidence that X had the character is still stronger because even if the phylogeny is

slightly wrong, it is still parsimonious to infer that X shared the character. The more close relatives

that X has all possessing character 1, the more certain we are that X must have had it as well, again

assuming the approximate accuracy of the phylogenetic reconstruction.

Paleoecological inferences based on genetic relationships are frequently useful, but are naturally

limited by the necessity of performing a complete and accurate phylogenetic analysis, which is always

laborious and sometimes impossible with plant fossil assemblages.

1.1.2 Sedimentology

Stratigraphic description of fossil plant collections had been standard since the 19th century because

it was needed for dating purposes. During the late 1970s and 80s some paleobotanists (e.g. Hickey

1977; La Pasha and Miller 1984) began to collect sedimentological information about the rocks in

which fossil floras were found. This information included small-scale measured sections, grain-size

and texture descriptions, many closely spaced and quantitatively sampled collection localities, bed

geometry, and sometimes chemical analyses of sediments. In addition to contemporary work on

analysis of paleosols (Retallack 1983; Krauss and Bown 1988; Retallack and Germán-Heins 1994)
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and facies analysis of the fluvial environments in which plant fossils are generally found (Allen 1965;

Crosby 1972; Schumm 1972; Gall 1983; Bridge 1993; Miall 1995, 1996), these data allow certain

inferences about the local environmental conditions. For instance, laterites and calcic or gypsic hard

pans were shown to indicate tropical and dry subtropical conditions respectively; aggrading fining

upward sequences implied proximity to a river channel, and carbonaceous shales distal or backswamp

conditions. Useful as these sedimentological interpretations frequently are, they generally provide

only qualitative information about climatic and environmental conditions. Quantitative estimates

based on these have often been found problematic, as in the case of using calcic hardpan depth to

estimate paleoprecipitation (Royer 1999).

1.1.3 Ecomorphology or Functional Ecology

Since early in the 20th century (Bailey and Sinnott 1915, 1916) there have been various attempts

to obtain environmental information directly from plant morphology, of which the most successful

and widely applied has been called leaf physiognomy (Dolph 1976, 1978, 1979; Wolfe 1979; Dolph

and Dilcher 1980a,b; Williamson 1981; Williamson et al. 1983; Dolph 1984). In the early 1990s a

new leaf physiognomic approach called the Climate Leaf Analysis Multivariate Program (CLAMP)

was introduced by Wolfe (1993), and subsequent debate over the merits of such an approach has

led to the division of leaf physiognomy into two methodological schools. The older approach, based

on linear regression of a single variable (percentage of entire-margined leaves) against mean annual

temperature, came to be known as leaf margin analysis or LMA, while CLAMP acquired a specific

group of adherents, developers, and critics (Kovach and Spicer 1995; Wolfe 1995; Herman and Spicer

1996; Stranks 1996; Kennedy 1998; Jacobs 1999; Spicer 1999; Wolfe and Spicer 1999; Gregory-

Wodzicki 2000; Jacobs 2002; Kennedy et al. 2002; Kowalski 2002; Spicer et al. 2004; Traiser 2004;

Spicer et al. 2005; Traiser et al. 2005; Green 2006). In addition, many other leaf physiognomic

analyses performed in the 1990s relied on multivariate data without following the CLAMP protocol

or compared different methodologies (Wing and Greenwood 1993; Jacobs and Deino 1996; Jordan

1997; Wilf 1997; Wilf et al. 1998; Wiemann et al. 1998a, 2001; Huff et al. 2003; Kowalski and

Dilcher 2003; Greenwood et al. 2004; Royer et al. 2005; Miller et al. 2006; Royer and Wilf 2006).

Though many of these studies employed both leaf margin analysis and CLAMP, there have remained

differences in approach between supporters and opponents of: (1) complex analyses of multivariate

data as opposed to simple univariate regression and (2) multivariate ordination techniques like

principle components analysis, as opposed to simple linear regression.

Relatively fewer studies have looked at wood anatomy Baas (1986); Wheeler and Baas (1993);

Woodcock and Ignas (1994); Wiemann et al. (1998b, 2001) with similar physiognomic ends in mind,
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and somewhat less work (Raunkiaer 1934; Richards 1939; Givnish 1978) has been done to relate

plant growth form to environmental parameters quantitatively.

1.2 Leaf Ecophenetics: A New Method for Plant Paleoecology

Leaf ecophenetics is a methodology for producing semi-quantitative and ecologically meaningful

descriptions with which to compare fossil and modern forest floras. It springs directly from leaf

physiognomy: the data are collected exactly the same way as it is for CLAMP or another multivariate

leaf physiognomic method, but the intent behind the investigation and the methods of data analysis

are very different. Instead of seeing the analysis of these multivariate data on the distribution of leaf

architectural data as a problem of estimation, leaf ecophenetics sees it as a problem of classification.

The intent is ecological as opposed to paleoclimatological and the data analysis is exploratory rather

than being based on regression models. For these reasons, I list leaf ecophenetics in the table in the

previous section as part of ecomorphology or functional paleoecology, and not as a subsection of leaf

physiognomy, which has since its inception been primarily focussed on climate.

Ecophenetic descriptions of floras rely on data from leaf architecture as a proxy metric for

aspects of the ecosystem because (1) inter-comparable leaf-architectural data are easily obtainable

from imperfectly preserved or poorly described fossil and modern floras, and (2) a strong prima

facie case has been made for the presence of an ecological signal in leaf morphology (Givnish 1986).

The method that is being proposed to extract this signal is by coding floras (assemblages of leaves

collected from the same locality) in such a way as to produce for each flora an n-dimensional vector

that describes the leaf architectures found in the flora. There are two main published methods for

producing this vector, the first based on Compendium Index Categories or CICs (Ash et al. 1999;

Green and Hickey 2005) and the second on the Climate Leaf Analysis Multivariate Program or

CLAMP (Wolfe 1993, 1995). In either case, the leaves from a fossil bed or a forest stand are sorted

into categories like ‘Toothed’ and ‘Entire’ or ‘Pinnately veined’ and ‘Palmately veined’. Then the

proportion of leaves in each category is determined and these proportions are arranged in a vector

that describes the composition of the entire flora. There are numerous variations on the exact

method of coding (e.g. CLAMP has 31 and CICs 64 variables); chapter 2 includes an experiment

comparing the two published methods. Analysis of these floral vectors by hierarchical cluster analysis

and multivariate graphical analysis confirms expectations that regardless of the coding method leaf

shape reflects environment (among other variables) and that the tools of exploratory data analysis

provide a means of deconvoluting these variables.

The semi-quantitative descriptions of forest floras that are produced by this methodology allow

direct comparison of fossil and modern forests on functional grounds that bypass taxonomic ambigu-
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ity in the fossil record. Exploratory data analysis allows such data to be presented in such a way that

a large amount of detail that is significant to inter-stand variation can be quantitatively described

and visually appreciated. This connects the microscale of site census data with the macroscale of

diversity curves through geological time by emphasizing the variation in the data that is significant

to ecological characterization at large scales.

This methodology is made particularly useful by the presence in the paleobotanical literature

of a large body of descriptive information on fossil floras, which provides a rich source of floras to

code. Moreover, the The Compendium Index of North American Mesozoic and Cenozoic Type Fossil

Plants, a bibliographic and taxonomic database housed at the Yale Peabody Museum, provides

about 250 fossil floras that have already been coded by CIC. This dissertation provides a large

enough body of data on modern floras to support a multi-dimensional framework within which fossil

floras can be ordinated.

1.3 Sources of Data and Structure of the Dissertation

This section provides a summary of the data that are dealt with in the body of the dissertation.

Chapter 2 validates ecophenetics as a methodology. Chapters 3–6 are relatively stand-alone appli-

cations of different aspects of the general method, applied to different data sets and testing different

hypotheses. Chapter 7 provides a more theoretical examination of the analytical problem of classi-

fying vegetation on the basis of architectural scores; and chapter 8 concludes the dissertation and

provides a program for continued research.

1.3.1 Validation of Leaf Ecophenetics Using Newly Coded Data

Chapter 2 describes in more detail the new paleoecological methodology introduced briefly above in

section 1.2. The data discussed consist of multivariate morphological ‘scores’ for 162 modern and 8

fossil floras obtained using one of the two existing scoring methods (CLAMP and CICs). In addition

to exploratory analyses of these data, chapter 3 provides a basic validation of the methodology and

defense of the thesis that semi-quantitative descriptions of the leaf architectural characteristics of

forest floras allow direct comparison of fossil and modern forests on functional grounds that bypass

taxonomic ambiguity in the fossil record.

1.3.2 Variation Through Time: Data from the Compendium Index

Chapter 3 deals with diachronic variation—patterns though time—with reference specifically to data

from The Compendium Index of North American Mesozoic and Cenozoic Type Fossil Plants, a card

index of fossil plant occurrences held in the Yale Peabody Museum. In particular I focus on the
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Cretaceous/Tertiary boundary, and show how our appreciation of its influence on plant evolution

depends on the scale of analysis. An article has already appeared in print (Green and Hickey 2005)

from which most of the material in chapter 3 is taken directly, and an electronic version of the

Compendium Index has been released as Hickey et al. (2006).

1.3.3 The Problem of Inhomogenous Spatial Sampling: Meta-analysis of CLAMP

Chapter 4 is a detailed reanalysis of data from four studies (Wolfe 1993; Jacobs 1999, 2002; Gregory-

Wodzicki 2000; Kowalski 2002) that have published multivariate data on modern forests obtained

using the CLAMP coding method. All of these data have appeared before in print, so the raw

numbers are not provided again here; the electronic version of the data and the scripts used for data

processing are provided in the appendices. A version of chapter 4 has already been published (Green

2006).

1.3.4 Dealing with Spatial Variation using Synthetic Floras

Chapter 5 raises the issue of spatial variation and the potential for irregular sampling to bias con-

clusions about relationships between leaf architectural variables and environmental conditions. It

contains a reanalysis of native North American tree distribution maps drawn by Elbert Little (Critch-

field and Little 1966; Little Jr. 1971, 1976, 1977, 1978) and digitized by Thompson et al. (1999). The

methodology employed is similar to that in Traiser (2004) and Traiser et al. (2005), and the results

reported here are based on a collaboration with Jonathan Adams and Yangjian Zhang of Rutgers

University. An article reporting our conclusions is currently in preparation (Adams et al. in prep).

1.3.5 Taxonomic Variation: Analysis of data from the National Cleared Leaf Collec-

tion

Temporal variation is treated in chapter 3; spatial in chapters 4 and 5. Chapter 6 is concerned with

taxonomic variation. The data examined consist of the CIC codes for the 6767 specimens of the

National Cleared Leaf Collection held at the Yale Peabody Museum.

Chapter 7 is a more theoretical treatment of some of the classification problems introduced in

chapter 2. In it, I employ data drawn from chapters 2 as well as some synthetic data to show the

operation of a new method for clustering floras based on structured factors.

1.4 Broader Significance

Chapter 8 discusses the broader significance of this project: the potential for paleoecology to provide

time depth for ecological studies with which to extend predictions about future ecological change.

23



The extent to which organisms and communities of organisms can create and modify their environ-

ments can best be seen at long time scales.

From the perspective of an ecologist or evolutionary biologist, it is more important to classify and

understand variation in ecosystems than it is to be able to use them to predict or estimate climatic

parameters. The landscapes we see around us are created not by the climate alone but by complex

interactions between extrinsic (physical and geological) forces and evolving biological communities.

Climatology and paleoclimatology have their own importance and significance, but do not explain

biological evolution.

Therefore a paleoecological method like ecophenetics that is focussed on classification may have

more potential for elucidating ecological dynamics than methods—even if they provide better pale-

oclimatic proxies—that treat biological processes only as a convenient way to record the inorganic

environment.
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2 Leaf ecophenetics: A new semi-quantitative method of

vegetation classification

In this chapter, I suggest a new semi-quantitative method of vegetation classification based on the

architecture or physiognomy of leaves. This method, which I am calling leaf ecophenetics, suffers

less from the sort of subjective and taxonomic biases that plague current methods and seems to

produce hierarchical classifications that are in reasonable accord with existing classifications. Leaf

ecophenetics is a method for the classification and ordination of plant communities that is applicable

to modern ecosystems and to fossil plant assemblages. It differs primarily from other methods of

ecological or paleoecological analysis in being (1) ecomorphological rather than systematic, (2) semi-

quantitative rather than qualitative, (3) focussed on classification of communities or ecosystems

rather than estimation of environmental parameters.

Most existing methods for classifying vegetation rely on the presence or relative abundance of

identifiable species in a flora, and often depend on subjective estimates of coverage or abundance.

Leaf ecophenetics depends instead on the distribution of leaves in architectural categories. I use two

different published methods of locating floras in n-dimensional morphospace based on leaf architec-

tural variables and then apply hierarchical clustering algorithms and graphical analysis in order to

display these scatters of ordered n-tuples as classifications. The classifications obtained are broadly

consistent with each other and with prior knowledge about the floras, indicating that the procedure

can produce reasonable classifications of small, homogeneously collected data sets.

2.1 Historical Context

Early on (von Humboldt 1807) plant ecology was not distinguished from plant geography, but during

the second half of the nineteenth century, the fields of study that had been known loosely as natural

history were broken up and reconstituted under the rubric of Darwinian evolution as biology and

its various subdisciplines. The name ecology for the subdiscipline dealing with organisms in their

environments was coined some time in the 1850s. Haeckel defined the term in 1870 (Kormondy 1969;

McIntosh 1985), though ecology does not seem to have become self-conscious as a discipline until

the very end of the 19th century. Moreover, Haeckel’s definition was firmly zoological, while the

appearance of ecology as a discipline in the 1890s was largely as a development of plant geography,

the roots of which go back well into the 18th century. Within ecology, the history and methodology

of vegetation classification have been fully described by Whittaker (1962), Whittaker (1973), and

Shimwell (1971), and a sourcebook of foundational papers is available edited by McIntosh (1978).

Unlike systematics, however, particularly phylogenetic systematics or cladistics, vegetation classifi-
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cation has not been substantively affected by the introduction of the personal computer in the 1980s

and 90s. Instead, the entire field of community classification, once considered central to ecology,

is scarcely mentioned in current introductory courses or textbooks. The reason vegetation classifi-

cation has recently been neglected seems not to be its lack of importance, but frustration with its

persistent subjectivity, and difficulty in integrating it into the increasingly mathematical framework

of population ecology.

The intent of this chapter is to suggest a method of vegetation classification that meets current

criteria for operator repeatability while pursuing the same traditional goal of classifying plant ecosys-

tems in biologically useful ways. Applications of this method are provided in subsequent chapters;

here it is intended only to show that the methods chosen for producing semi-quantitative descrip-

tions of floras encode information on variables of biological interest like biogeography and canopy

differentiation, as well as noise due to the coding process.

2.2 Methods of Data Collection

In order to address the problem of vegetation classification in the face of distrust of traditional

methods, I have developed a method of classification that seems to be comparatively insensitive to

subjective bias, produces quantitative or at least semi-quantitative descriptions of plant communities,

and encapsulates or displays a reasonably large amount of ecologically interesting information. As

a method it is not intended to replace traditional methods; instead it has it’s own sphere of validity,

strengths and weaknesses. Its particular strengths are its ability to support strictly hierarchical,

fuzzy and non-exclusive classifications, its simplicity, and the ease with which it can be interpreted

or the original data recovered from the classification. Weaknesses include its lack of generality (it only

applies to communities dominated by woody dicots, i.e. forests) and its reliance on a measurement

system designed for easy application not for ecological significance. It also spreads variation that

should probably be measured by a smaller number (about 10) quantitative variables out over a larger

group (31 or 56) ordinal variables. This makes data analysis and application of statistical methods

needlessly difficult and complex.

In the following analyses, the units being classified are all plant communities sensu the group

of plants growing in a well-defined geographical area during a historical duration of time. These

communities can be treated as individuals (Clementsian superorganisms) or they can be considered

communities (sets of populations). I will remain agnostic on this point, though the discipline of

ecology has been driven in the individualistic direction for purely historical reasons. Classification is

needed in either case and in either case the attributes that make a good classification are the same.

A good classification should be:
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1. Simple to make from easily collected data

2. Invariant with respect to the person who makes it, the time and place it is made

3. Capable of revealing or displaying biologically interesting variables

4. Stable under application to other data

5. As little removed as possible from the raw data used to produce it

6. Flexible enough that it can be adapted for disparate purposes

This is not an exhaustive list, and obviously some of these desirable attributes are mutually exclusive,

e.g. a totally unambiguous classification is liable to be ecologically uninformative.

Many characteristics could have been chosen to describe vegetation, but for ecological purposes

there is a prima facie rational for choosing elements of the vegetative body of the plant that are

particularly susceptible to modification under different environmental conditions, i.e. that are most

ecologically plastic. With the possible exception of overall growth form (plant architecture), the

leaf is notably the most environmentally plastic plant organ. An additional reason for focussing on

the architectural elements of leaves is their applicability to fossil ecosystems from which only leaf

impressions are preserved. This choice unfortunately limits the method to dicot forest ecosystems,

a limitation that is less restrictive because the majority of preserved fossil material since the middle

Cretaceous is from such ecosystems.

There are a number of ways to describe a dicot leaf assemblage or floras by a numerical vector that

reflects the shape and venation of the leaves in the flora. Two of these have been extensively applied.

The first and most broadly applied is the Climate Leaf Analysis Multivariate Program (CLAMP) of

Wolfe (1993). The second is the set of Compendium Index Categories (CICs) used to organize the

Compendium Index of North American Mesozoic and Cenozoic Type Fossil Plants at Yale University

(Hickey et al. 2006). The Compendium Index was the first systematic catalogue of fossil plants,

started by Dorf (1940) as an aid to taxonomic identification. It is cross-indexed taxonomically,

stratigraphically, and alphabetically, and organized according to the CICs, simple categories of

leaf shape and venation defined in Ash et al. (1999) and Green and Hickey (2005). Definition of

these categories is based on petiole attachment, primary venation pattern, leaf-shape, and tooth

type; the combinations of these variables produce 56 numerically labeled categories into which

reasonably well-preserved broad-leaved dicot leaves can be sorted. Though the Compendium Index

was primarily intended for cataloguing North American fossils, similar or derivative schemes have

been applied to other modern floras over the past two decades, including Australian (Christophel and

Hyland 1993) and Chinese (Yu and Chen 1991) floras. These applications of the same principles of

classification to very different floras show the robustness of the method and indicate that the current

Compendium Index base can easily be extended to incorporate floras worldwide. Furthermore,
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because the Compendium Index was designed for classification of fossils, the characteristics needed

in order to assign a CIC to a specimen are easily recognized in fossil material or from imperfect

illustrations in old publications. For convenience, I have used the CIC numbers (100–164) as variable

names, but these numbers are not themselves significant: they are merely bins into which leaves can

be sorted based on their morphology and structure.

I coded five floras (11 if canopy and understory components of the same flora are split apart)

using both CLAMP variables and CICs in order to compare two different procedures for producing

quantitative descriptions of leaf floras. As discussed above, the coding procedure used should be

applicable to fragmentary fossil material and inadequate publications, easy and quick to perform

and repeatable by different researchers, comparable when applied to modern and fossil assemblages,

and ecologically informative. Naturally neither of these procedures fulfils all these desiderata: the

CICs were designed to allow easy (taxonomic) identification of fossil leaves, therefore by construction

they supply the first two desiderata mentioned above: wide applicability and ease of application.

CLAMP variables take much longer to code, but were chosen for their functional importance so

they are more likely to provide ecologically meaningful descriptions. Below I describe the evidence

provided by a sample data set that the ecological signals I am trying to extract are so strong that

it does not matter which set of variables is ultimately chosen for the analysis.

In addition to the eight floras coded by both methods, 162 other modern floras were coded by

CIC to provide a broad framework within which fossil floras could be ordinated. Floral lists and

leaf descriptions were obtained from Braun (1950); Maycock (1994); Smith (1954); Berry (1916);

MacGinitie (1962); Sargent (1905); Gentry (1993); Grimm (1957); Preston (1961); Gleason and

Cronquist (1963); Little Jr. (1971); Lee (1935); Wang (1961); Wu and Raven (1994–); Krüssmann

(1985); Little Jr. et al. (1964, 1974); Leon and Alain (1946–1962); Richards (1939); Proctor (1984);

Espinal and Montenegro (1963); Stoffers (1956); Dansereau and Buell (1966); Liogier (1995); Britton

and Wilson (1923–1930); Stoffers (1962–1984); Hooker (1872–1897); Hutchinson and Dalziel (1954–

1968); Kong and Watts (1993); Lind and Morrison (1927); Sarlin (1954); Champion and Seth (1968);

Champion et al. (1965); Rodwell (1991); Mueller-Dombois and Fosberg (1998); Wardle (1991); Groves

(1994); Beadle (1981); Armstrong (1993); Tamm (1989); Hickey (1999); Johnson (1985); Williams

(1988); Tutin et al. (1964–1983); Stace (1997); Allen (1961); Wagner et al. (1999); Smith (1979–1981);

McMullan (1999); Hickey (1987–1992); Axelrod (1958, 1966, 1962); Chaney et al. (1938); MacGinitie

(1969); Chaney et al. (1944); Hickey (1977); Becker (1961); Lakhanpal (1958); MacGinitie (1974)

and MacGinitie (1953). (Note that these sources are listed in the order of a temporary reference

number used in the original data scoring sheets.)

Figure 2.1 is a flowchart that shows the process of data acquisition and analysis schematically;
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the following sections provides analysis of various subsets of the data in order to demonstrate the

reliability of the coding method.
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Figure 2.1: Flowchart showing procedure for data acquisition and analysis.



2.3 Data Analysis

Validation of this methodology rests on two bases: first, on the concordance between the two methods

of coding that we have applied and second on the way in which traditional classifications are in

general terms substantiated by the new technique.

Figure 2.2 shows how a similar clustering structure can be recovered from morphological codes

of a simple, homogeneously collected set of floras. Note that in this case CICs do a better job than

CLAMP variables at recovering the expected relationships. (Here and below, the term ‘relationship’

does not, of course, imply genetic relatedness, but merely similarity of leaf architecture.) The

floras considered are all derived from Braun (1950) and consist of two deciduous floras (one upland,

one lowland) from the Duke University experimental forest in North Carolina, in the ‘Oak-Pine

Region’; two floras from Kentucky from the ‘Mixed Mesophytic Region’, and one broadleaf evergreen

flora from Louisiana, in the ‘Southeastern Evergreen Region’. The suffix ‘.c’ refers to the canopy

component of each flora; the ‘.u’ suffix the understory.
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Figure 2.2: Comparison of clusters obtained using the CICs and CLAMP variables.

Figure 2.3 shows three of the same five floras as are clustered in figure 2.2; here, however, the

actual spectra for each flora are shown as well as the clusters produced by a hierarchical clustering

algorithm. All of the floral lists from which these were coded come from the same source (Braun
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1950), and all the actual coding was done by the same person (the author). The form of presentation

is called a ‘heatmap’. It consists of a matrix of shaded blocks showing the values or weights that each

variable (CIC) takes for each flora under consideration. One-way clustering of floras is performed;

i.e. the variables remain in a fixed order, but the floras are hierarchically clustered and reordered

according to their distances from each other. Vertically oriented lines of dark blocks show variables

(leaf forms) that are shared by floras; horizontally oriented lines indicate floras that have unique leaf

forms (among the floras being considered). The remainder of the figures in this chapter consist of

heatmaps of different subsets of the data showing how different aspects of the coding process affect

the results. The colored blocks to the left of the heatmap in each figure are used to show a single

categorical variable such as the person coding the flora or the region from which the flora came.
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Figure 2.3: Heatmap of three floras (split into nine floras and subfloras) with hierarchical

clustering based on CIC scores. All floras were coded by the same person (the author).
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In figure 2.4, recoded versions of the same three floras by two other people are added to those

shown in figure 2.3. Note the noise induced by the imperfect coding process: floras no longer cluster

together as they are supposed to, although their relationships are still approximately correct. The

colored bar at the left side shows the three different coders whose systematic biases influence the

quantitative descriptions produced: light green is for E. A. Schenker, medium green for A. L. Baker,

dark green for the author.

C
IC

10
0

C
IC

10
1

C
IC

10
2

C
IC

10
3

C
IC

10
4

C
IC

10
5

C
IC

10
6

C
IC

10
7

C
IC

10
8

C
IC

10
9

C
IC

11
0

C
IC

11
1

C
IC

11
2

C
IC

11
3

C
IC

11
4

C
IC

11
5

C
IC

11
6

C
IC

11
7

C
IC

11
8

C
IC

11
9

C
IC

12
0

C
IC

12
1

C
IC

12
2

C
IC

12
3

C
IC

12
4

C
IC

12
5

C
IC

12
6

C
IC

12
7

C
IC

12
8

C
IC

12
9

C
IC

13
0

C
IC

13
1

C
IC

13
2

C
IC

13
3

C
IC

13
4

C
IC

13
5

C
IC

13
6

C
IC

13
7

C
IC

13
8

C
IC

13
9

C
IC

14
0

C
IC

14
1

C
IC

14
2

C
IC

14
3

C
IC

14
4

C
IC

14
5

C
IC

14
6

C
IC

14
7

C
IC

14
8

C
IC

14
9

C
IC

15
0

C
IC

15
1

C
IC

15
2

C
IC

15
3

C
IC

15
4

C
IC

15
5

3cLouisiana.c

3cLouisiana.u

3cLouisiana

BayouCane.ALB

BayouCane.EAS

DukeForestLowland.EAS

DukeForestLowland.ALB

1aLowlandNC.c

1aLowlandNC

1aLowlandNC.u

2bUplandNC.c

2bUplandNC

2bUplandNC.u

DukeForestWhiteOakUpland.EAS

DukeForestWhiteOakUpland.ALB

Colored by Coder

Figure 2.4: Same as figure 2.2, but with each flora coded by three different people. Note

the inaccuracy induced: the upland floras remained distinct enough to cluster together

regardless of coder, but there was confusion between the evergreen and deciduous lowland

floras. Note that the floras labeled ‘BayouCane’ are the same as those labeled ‘Louisiana’

and the words ‘DukeForest’ and ‘WhiteOak’ can be ignored—they are artifacts of a

change in naming convention.
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Figure 2.5 shows the introduction of additional noise from coding source: here the colored bar

to the left refers not to different coders but to different source publications, another variable that

adds noise to the ecological signal. Dark blue indicates a flora from Braun (1950); light blue from

Maycock (1994).
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Figure 2.5: Addition of floras coded from floral lists in a different source: again note

how there is source noise (different sources tend to cluster together), but that the source

noise does not totally swamp the geographical or ecological signal.

Figure 2.6 shows all the North American floras in the data set: as with phylogenetic reconstruc-

tion, as more terminals are added, the precision with which their relationships are shown decreases.

Nevertheless, despite the noise due to different coders and different source publications, strong sig-

nals like the clustering of northeastern mixed deciduous forests (the bottom five floras in the figure)

remain evident. The red bar to the right indicates that all the floras are from the same region (North
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America).
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Figure 2.6: All floras from North America, showing how the precision of the classification

decreases as more terminals are added, but that strong signals like the clustering of

northeastern mixed deciduous forests (the five at the bottom of the figure) remain easily

visible.

35



When floras from China are added as they are in figure 2.7, a very strong regional clustering

is evident. Here the left colored bar shows the continent from which the flora was obtained. Red

again indicates North America and pink China. Note that at this scale of analysis, the noise due to

coding and publication bias is less influential than the larger distance between floras from different

continents.

C
IC

10
0

C
IC

10
1

C
IC

10
2

C
IC

10
3

C
IC

10
4

C
IC

10
5

C
IC

10
6

C
IC

10
7

C
IC

10
8

C
IC

10
9

C
IC

11
0

C
IC

11
1

C
IC

11
2

C
IC

11
3

C
IC

11
4

C
IC

11
5

C
IC

11
6

C
IC

11
7

C
IC

11
8

C
IC

11
9

C
IC

12
0

C
IC

12
1

C
IC

12
2

C
IC

12
3

C
IC

12
4

C
IC

12
5

C
IC

12
6

C
IC

12
7

C
IC

12
8

C
IC

12
9

C
IC

13
0

C
IC

13
1

C
IC

13
2

C
IC

13
3

C
IC

13
4

C
IC

13
5

C
IC

13
6

C
IC

13
7

C
IC

13
8

C
IC

13
9

C
IC

14
0

C
IC

14
1

C
IC

14
2

C
IC

14
3

C
IC

14
4

C
IC

14
5

C
IC

14
6

C
IC

14
7

C
IC

14
8

C
IC

14
9

C
IC

15
0

C
IC

15
1

C
IC

15
2

C
IC

15
3

C
IC

15
4

C
IC

15
5

2bUplandNC.c
2bUplandNC
2bUplandNC.u
1aLowlandNC.c
1aLowlandNC
1aLowlandNC.u
6fCuba
KwangtungTropical
Taiyun−Shan
N.Chekiang
Mon−ShanLower
KwangtungTemperate
W.Szechuan
ShuishaPa.v2
N.Kiangsi
W.HupehandE.Szechuan
S.Anhwei
E.Kweichow
Chenkou.v2
Ishing.v2
ChenkouPingho.v2
Nantan
N.Chekiang2
Mon−ShanUpper
Wumong−Shan
Siwantze
NEProvinces
GreatPlain
S.ShensiSEKansuLowerSlopes
S.ShensiSEKansuUpland
Lu−Shan
SENorthAmerica
SENorthAmerica2
Adirondacks
BigBasinLowerSlopes
Colebrook
SENorthAmerica4
SENorthAmerica5
PisgahMtn.
SENorthAmerica6
SENorthAmerica8
SENorthAmerica3
CascadeCaves.v2
Gallipolis.v2
LimestoneCreek.v2
5eCarterCavesKY
4dBuckBridgeKY
LogMtn.v2
PineMtn.v2
NaturalBridge.v2
CaneCreek.v2
BlackMtn.v2
BayouCane.ALB
BayouCane.EAS
3cLouisiana.c
3cLouisiana.u
3cLouisiana
LuShan.v2
ChiuhuaShan.v2
SENorthAmerica14
SENorthAmerica12
SENorthAmerica10
SENorthAmerica9
SENorthAmerica11
SENorthAmerica7
CoxWoodsTransects.EAS
Campbellsville
CoxWoodsTransects.ALB
MammothCave.ALB
MammothCave.EAS
No−BusinessCreek.EAS
DukeForestWhiteOakUpland.ALB
DrippingSprings
DukeForestWhiteOakUpland.EAS
DukeForestLowland.EAS
No−BusinessCreek.ALB
DukeForestLowland.ALB
SENorthAmerica13
SENorthAmerica15
SENorthAmerica16

Colored by Region

Figure 2.7: When floras from China are added; a very strong regional clustering is evident.

In order to illustrate the worst-case scenario, figure 2.8 shows as random sample of floras from

the complete data matrix. A complex mixture of signals is apparent in which the sources of noise are

mixed with real environmental signals. The colored bar at the left again indicates region: magenta

for India; grey for Pakistan; green for Australia; blue for Latin America; orange for China; white

for Africa; yellow for Pacific islands; black for North America, and cyan for Europe. Of particular

interest is the Lebo fossil flora from the Paleocene Fort Union Formation of Montana Tamm (1989)
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which is nested within a number of modern floras from China. This supports the conventional

wisdom that the best extant analogs to early Cenozoic floras from North America are found in

southeast Asia because the current North American flora was decimated by the ice ages relatively

recently.
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Figure 2.8: A random sample of floras from the complete data matrix. Note complex

mixture of signals.
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In contrast, to the primarily geographical clustering shown in the previous two figures, figure

2.9 shows a small group of floras from the Hawaiian islands which again were collected and coded

homogenously from Mueller-Dombois and Fosberg (1998). Here instead of a geographical signal

being evident, clustering is by canopy position: that is, for three floras each from four islands (one

lowland, one cloud forest canopy and one cloud forest understory), the ecological types (canopy

positions), not the islands, cluster together. This shows how even when an environmental signal is

not obstructed by noise, it can signify different things: in figures 2.7 and 2.8, primarily geographic

distance; in figure 2.9, primarily canopy position. This set of floras from Hawaii will be considered

again in chapter 8.
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Figure 2.9: A small set of floras from the Hawaiian islands showing how leaf architecture

sometimes carries information about canopy position rather than geography or climate.

2.4 Discussion

One thing that is not provided by the figures in the previous section is biologically interesting

metadata. For instance, do floras cluster by temperature? The answer is that they do (even if these

data do not tell us so). We know that geographic regions do cluster together both by temperature

and by leaf architecture. Temperature is not a variable easily collected for these floras, nor would

the figures in the previous section be the best way of identifying a gradient among floras with respect

to temperature, even if temperature data had been collected. These examples were not intended

to interpret the signal carried by leaf architecture, merely to show that the signal exists and is
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interpretable. Following chapters provide specific scenarios in which it is interpreted and applied to

particular questions of biological interest.

2.5 Continued Work: The Standard Floral Paragraph (SFP)

A question remains: how to record and publish the sort of data examined in the previous section.

Information about character states in systematic paleobotanical publications is published as charac-

ter matrices and descriptions or as ‘systematic paleontology’—standardized descriptive paragraphs

that encode the relevant diagnostic information about each taxon described.

In this section I propose a form of standard paragraph for the publication and storage of the data

collected and analyzed here. In contrast to systematic paleontology, it is vital that this information

be easily machine-readable, but it is superficially more opaque than freer methods of describing

floras. Like the descriptions of taxa in Airy Shaw (1973) or Mabberley (1997), however, the format

is meant to be readable by people as well as computers.

There follows a paradigm and description of the fields in the format as well as a sample entry

from Brown (1933). Although the data analyzed above have not yet been converted into this form,

the form is presented here to indicate the direction future work will take. Scripts to automate the

process of reading and writing to this format are provided in appendix B.

Name of flora. (2) Formation binomial (3) Age (4) Organ(s) preserved (P,W,L,R) (5) Preser-

vation type (O, I, M, C, P, R, A) (6) Number of OTUs (n/a/g/p/b/o) (7) Matrix (8) Facies (9) Cur-

rent location (Lat/Long/elev. or description). (10). Taxon list (comma delimited). (11) References

(comma delimited). (12) CICs (comma delimited). (13) Percentage entire of angiosperm leaves. (14) Aver-

age size of angiosperm leaves. (15) CLAMP (comma delimited). (16) Notes

(1) Name of flora

(2) Formation binomial

(3) Age

(4) Organ(s) preserved (P,W,L,R): Pollen/spore (microfloral disseminule), Wood, Leaf, Reproductive struc-

ture (seed, fruit, flower, cone, macrofloral disseminule)—list all that apply

(5) Preservation type (O, I, M, C, P, R, A): Original material, Impression, Mold/cast, Compression/coalified

original, Permineralization, chemical Replacement, Anatomical detail present—list all that apply

(6) Number of OTUs (n/a/g/p/b/o): All, angiosperm, gymnosperm, pteridophyte, bryophyte, other.

(7) Matrix

(8) Facies

(9) Current location (Lat/Long/elev. or description).
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(10) Taxon list (comma delimited).

(11) References (comma delimited).

(12) CICs (comma delimited).

(13) Percentage entire of angiosperm leaves.

(14) Average size of angiosperm leaves.

(15) CLAMP scores (comma delimited).

(16) Notes

Where multiple references are given, the data they provide has been synthesized to produce the floral

entry; * indicates that the entry does not come form the indicated reference or references and that the

superseding authority is not given; a parenthesized entry after the asterisked field indicates the original

(superseded) data. Thus, if Heer (1895) has described a flora from the Miocene, and Spicer (1996) has

shown that the formation where Heer was working to be Jurassic, the entry for the age of the flora could be

either:

‘(3)Jurassic*...(9)Heer (1895)’

or

‘(3) Jurassic*(Miocene)...(9)Heer (1895)’

or

‘(3) Jurassic...(9)Heer (1895), Spicer (1996)’

or

‘(3) Jurassic (Miocene)...(9)Heer (1895), Spicer (1996)’

EXAMPLE:

Aspen. (2)Aspen Shale (3)UUAlb (4)L, R (5)I (6)26/23/3/0/0/0 (7)Volcaniclastic shales, siltstones,

fine ss. (8)Fluvial (9)5 mi. NW of Kemmerer, WY, U.S.A. (10)Taxon list (comma delimited). (11)Brown

(1933) (12)cics[0, 2, 0, 0, 6, 0, 4, 0, 0, 1, 0, 3, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (13)86 (14)Mesophyll (15)clamp[0.56, 0.32, 0.47, 0.50, 0.00 , 0.33,

0.78, 0.39, 0.00, 0.70, 0.30, 0.60, 0.50, 0.55, 0.55, 0.20, 0.57, 0.86, 0.87, 0.94, 0.27, 0.25, 0.20, 0.45, 0.56, 0.3,

0.80, 0.34, 0.23, 0.18, 0.22, 0.56] (16) Notes

2.6 Conclusions

Leaf ecophenetics is a new method for plant paleoecology. This chapter explains it and shows how

despite several different sources of noise, an environmental or ecological signal is easily detectable in

modern and fossil floras. The method produces a semi-quantitative description of each flora studied

(based on the leaf forms found in the flora), classifies it with respect to other floras, and allows the raw
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data (the leaf forms that characterize a given flora) to be recovered from graphical representations of

the floral spectra. Subsequent chapters provide examples of how this general method can be applied

to biological question about relationships between and among floras distributed through time, across

geographic space.

Methods of ecological reconstruction that rely on functional morphology are less subject to non-

uniformitarian biases than those that rely on phylogenetic analysis. DiMichele et al. (2001) take an

approach similar to the one suggested here: they describe a method for quantifying ‘ecomorphospace’

by coding particular taxa for a set of 22 ‘ecomorphic’ characters and then clustering them mathemat-

ically using principle components analysis and an agglomerative clustering algorithm. They recover

clusters that are roughly congruent with the traditional Linnaean classes, thereby supporting our

expectation that in general the Linnaean classes correlate with broadly construed ecological niches.

They then use this observation to support the macroevolutionary theory that early radiations ‘fill’

niche space in a comparatively short time, leaving subsequent evolution only certain niches to exploit

under historical constraints, just as morphological evolution fixes the body-plan early in history and

canalizes subsequent modifications. Although DiMichele et al. (2001) address the question of ecolog-

ical patterns through evolutionary time, their paper is not intended as a general methodology, but

rather as a way of answering a specific question about the ecological influences on plant evolution.

My approach is more pattern-oriented: instead of formulating a particular hypothesis and then

finding a specific way to test it, I have developed a general way of displaying and publishing pa-

leobotanical data so that fossil floras can be fit into the framework in which we analyze modern

floras. It is known that particular communities are characterized by particular patterns of leaf ar-

chitecture; here information on relationships among ecosystems is recovered from leaf architectural

data in the way that the early plant synecologists like Warming and Raunkiaer used the ‘physiog-

nomic method of ecological characterization’ to classify communities into formations (i.e. ecological

characterization by growth form, not to be confused with leaf physiognomy. See Whittaker (1962)).

How does ecophenetics differ from other attempts to derive ecological information from fossil

assemblages? First of all, leaf physiognomy is a method of climate reconstruction, not a step towards

characterization of forest communities: it is essentially about estimating climatic parameters, not

facilitating ecological pattern recognition. No doubt many of the patterns we hope to identify will be

highly correlated with climatic parameters that are identified by leaf physiognomy, but the statistical

tools used by CLAMP and related methods take complex and multivariate inputs and return a few

variables. The approach used here is to reformat the complex relationships between ecosystems

using leaf architecture as a proxy measurement so as to reveal hitherto unknown patterns in the

history of plant evolution.
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3 Leaf architectural patterns through time: An example from

the Cretaceous/Tertiary boundary

The Cretaceous/Tertiary boundary extinction has long been considered one of the most important

identifiable events in the course of Phanerozoic evolution. At times, the dramatic evidence for this has

obscured the fact that any extinction event is selective and may not affect all groups of organisms

in the same way. In this chapter, I examine a North American plant fossil database from the

Mesozoic and Cenozoic eras in order to re-evaluate the evolutionary significance of the Cretaceous-

Tertiary extinction on plants. A comparison of the leaf architectural profiles of fossil floras in each

stage of the Cretaceous and epoch of the Cenozoic shows that the changes in leaf architecture at

the Maastrictian/Paleocene boundary cannot be statistically distinguished from the population of

changes at other boundaries. To the extent that patterns in leaf architecture reflect ecosystem

structure, we can therefore conclude that despite the local species or morphotype extinctions that

are known to have taken place at the boundary, the effect of the extinction on the structure of plant

ecosystems was either minor or short-lived. Certainly, the extinction seems insignificant compared

with the dramatic changes in leaf-architecture that accompanied the rise of angiosperms in the

middle Cretaceous. This analysis also provides an example of the importance of time scales in the

evaluation of macro-evolutionary pattern, and shows how the use of morphological categories instead

of phylogenetic groups or simple diversity measures can produce rich and ecologically informative

semi-quantitative proxy measurements of plant evolutionary patterns.1

3.1 Introduction

Since 1980, when Alvarez et al. (1980) proposed an extra-terrestrial impact as the extinction mecha-

nism at the K/T boundary, questions about the significance of these extinctions for plant ecosystems

have remained contentious, though there seems to be little question that the K/T extinctions dra-

matically affected the course of terrestrial vertebrate evolution. Long before the probable cause of

the extinction was determined, the faunal discontinuity at the boundary was considered so impor-

tant that it was used to identify major subdivisions of geological time. The floral record, however,

does not show such a clear change at the K/T boundary. Did the K/T boundary event change the

course of plant evolution, or did it merely cause some local species extinctions without affecting

plant evolution in any lasting way? Were the K/T extinctions more or less influential than the rise

1Note on authorship: The material in this chapter has already appeared in print as Green and Hickey (2005). My

co-author, Leo J. Hickey, collaborated with me on framing the research and provided editorial suggestions on the text;

I performed all the data analyses and wrote the text.
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of angiosperms in the middle Cretaceous? Opinions based on personal experience with the fossil

record and on data sets of limited geographical and chronological extent have been numerous, but

the difficulty of amassing a large set of comparable data on botanical macrofossil occurrences has

restricted most data-based discussions to local dynamics and short-term effects.

In order to address these questions about the long-term effects of the K/T boundary extinction on

plant evolution, I examined a database of fossil leaf occurrences through the Mesozoic and Cenozoic

eras from an eco-morphological perspective. That is, I intentionally ignored the available taxonomic

information (except the collection of specimens into operational taxonomic units, morphotypes,

or species), instead examining only change in patterns of leaf architecture. This provides a more

complex and ecologically informative view of change than most prior examinations of the floral

record, which have focussed on species diversity as the sole response variable.

Consensus on the floral response to the K/T boundary event has varied widely during the past

twenty years: one initial reaction (Hickey 1981:302) was that the North American macrobotanical

record made it ‘unnecessary for the paleobotanist to invoke a catastrophic or unusual mechanism to

explain the observed patterns of localized extinctions’. Subsequently, however, palynological data,

better correlation, and more thorough sampling at good boundary sections modified this response

to the point where Johnson and Hickey (1990), discussing a composite stratigraphic section in

Marmarth, North Dakota, wrote that ‘results of this analysis of the terrestrial plant record are

compatible with the hypothesis of a biotic crisis caused by extraterrestrial impact at the end of

the Cretaceous’ (Johnson and Hickey 1990:433). The most recent discussions seem to reinforce

this point of view; a new analysis of the Hell Creek/Fort Union boundary in North Dakota (Wilf

and Johnson 2004), which is clearly the best-studied plant macrofossil boundary section, gives a

local species/morphotype extinction rate of about 57%, and stresses the ‘sharp shift’ in floristic

composition at the boundary.

But the question remains: have we in the past twenty years actually modified our ideas about the

plant fossil record, or have we just agreed that other evidence for the impact is conclusive and then

found a correlative signal in the macrobotanical record? Note that there is a substantive difference

between on the one hand identifying such a signal or even suggesting that the extinction rate at

the boundary is statistically different from background, and on the other hand arguing that such

extinctions played a significant role in plant evolution. So it remains an open question: were plant

ecosystems doing anything substantively different in the Paleocene from what they had been doing

in the Cretaceous?

Such broad questions about plant evolutionary history have been asked for over a century (see,

for example Ward 1883–1884), but our knowledge of the evolution of plant ecosystems is limited by
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the difficulty of collecting unbiased data on plant fossils distributed through time. Obviously any

sample of past vegetation will be affected by taphonomy, by irregular sampling, by varying volumes

of preserved sediment, by different intensity of research, and by differing taxonomic practices and the

incomparability of modern and fossil taxa. Nevertheless, the few instances in which diachronic data

on plant diversity have been assembled have given us some semi-quantitative support for assumptions

about historical events like the rise of angiosperms and the K/T boundary event. In particular, the

data set initially described by Knoll et al. (1979) and subsequently published as species diversity

curves in Niklas et al. (1985) has been nearly as influential in paleobotany as the similar data on

marine invertebrate diversity collected by Raup and Sepkoski (Raup 1972; Sepkoski et al. 1981;

Sepkoski 2002)) have been in invertebrate paleontology. The picture of changing plant diversity

through time provided by Niklas et al. (1985) has been independently substantiated in part by

Lidgard and Crane (1988), but to the best of our knowledge, few subsequent attempts to elaborate

on this picture have been particularly influential.

An eco-morphological approach, in which patterns of change in leaf architecture are treated

as measures of ecological change, has the potential to tell a more detailed story. In this chapter,

I examine the question of ecosystem continuity at the K/T boundary by looking at changes in

leaf architectural profiles of fossil floras since the beginning of the Cretaceous as represented in

the Compendium Index of North American Mesozoic and Cenozoic Type Fossil Plants (henceforth

Compendium Index), a database that is more-or-less independent of and complementary to the

diversity data of Niklas et al. (1985).

This is not meant either as a review of literature on the K/T boundary generally, or as a

justification of the ecological interpretation of leaf architectural patterns. Instead, like Raup and

Sepkoki’s work on the marine invertebrate record, it is intended to identify patterns and correlations

in the known fossil record, and interpret them based on the assumption that such patterns in the

fossil record have evolutionary significance.

3.2 Data

The data from the Compendium Index that are considered here reside in a card index and computer

files at the Peabody Museum, Yale University, with entries for published descriptions of fossil plant

species from the Mesozoic and Cenozoic Eras. Each entry consists of the published illustration

and description of the fossil species and a citation for the source from which the illustration and

description were obtained. The intent of the Compendium Index has been to provide full descriptions

of all North American fossil species, and although it is far from complete, it is probably at the current

time the most comprehensive single reference in North America for identification of Mesozoic and
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Cenozoic leaf fossils. Erling Dorf began compiling the Compendium Index at Princeton University

in 1937 as an aid to taxonomic identification, and by 1940 he and his staff had amassed cards for

some 4500 species from 126 references (Dorf 1940). In 1984, after Dorf’s death, the Compendium

Index was transferred to Yale University where it has since been maintained and augmented at the

Peabody Museum.

Currently, there are about 9800 species or morphotypes represented from 233 references, and

the list continues to grow at a rate of about 25 new references per year including both current

publications and gaps in the coverage of the older literature. The intent has been to enter all newly

published type material as well as important emendations and range extensions of species that are

already represented in the catalog (that is, additional cards are added for species that have been

revised or are reported from stages, localities, or formations from which they had not previously

been known.) While the temporal resolution of each card depends on the publication from which it

was obtained, the minimum resolution in the Compendium Index is to epoch in the Triassic, Jurassic,

and Cenozoic, and to age in the Cretaceous. Spatial resolution also varies by source and for the most

part has not yet been electronically recorded. Beginning in the 1980s, portions of the Compendium

Index were entered into a computer database (originally dBase; the files are currently maintained in

FileMaker Pro) allowing electronic manipulation of some of the data, and an electronic version of

the Compendium Index was recently released as Hickey et al. (2006).

Partly because of the interests of those responsible for maintaining the Compendium Index, partly

because identification of angiosperm leaves remains one of the most difficult and potentially reward-

ing pursuits for the systematic paleobotanist, there has been a distinct bias towards including leaves

at the expense of other organs (there is only one category, for instance, for angiosperm wood and

over fifty for angiosperm leaves). In addition, as in any taxonomic database, different researchers

are predisposed to be ‘splitters’ or ‘lumpers’, thereby unnaturally proliferating or impoverishing the

numbers of species recorded from a given locality. Like any record of fossil data, the Compendium

Index is also affected by taphonomic sorting during fossilization: because the most favourable con-

ditions for preservation (high sedimentation rates and anoxic sediments) occur in lowland floodplain

facies, there is an enormous bias in the fossil record in favor of the plants that grow in those habitats.

Moreover, mechanically strong and well-vascularized leaves, such as those produced by canopy trees,

preserve much better than the soft, weakly veined leaves generally produced by herbs (Behrenmeyer

and Hook 1992). Therefore the fossil record is largely a record of the woody component of lowland

forests, though occasional catastrophically buried floras provide a more complete picture of the veg-

etation at particular localities Wing et al. (1993). Such extraordinarily well preserved floras are rare,

however, so if we are interested in producing a relatively continuous picture of variation in time and
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space, we cannot limit our analysis to these fossil Lagerstätten.

Unlike the Index of Generic Names of Fossil Plants (Andrews 1970) and its antecedents (Lamotte

1952; Knowlton 1919) which were based on the Compendium Index of Paleobotany at the Smithso-

nian Institution, the Princeton/Yale Compendium Index provides an illustration and description for

each fossil as well as its name and citation. Thus it can perhaps better be compared with regional

monographs (Berry 1916), illustrated museum catalogs (Steward 1894; Stopes 1913; Reid and Chan-

dler 1926, 1933; Chandler 1961)), or the Traitè de Palæobotanique (Boreau 1964–). Since the failure

of the Traitè in the 1970s, when faced with the taxonomic difficulties of the plant fossil record in gen-

eral and with fossil angiosperm organs in particular (Collinson et al. 1993), the Compendium Index

remains the best approximation of a comprehensive paleobotanical reference work analogous to the

Treatise on Invertebrate Paleontology (Moore et al. 1952–). New resources that could potentially su-

percede the Compendium Index, and with which we hope the Compendium Index will ultimately be

integrated, include the Paleobiology Database (Paleobiology Database) and MorphoBank (O’Leary

and Kaufman 2007).

Since we might like to follow Raup and Sepkoski’s lead (Raup 1972; Sepkoski 2002) in using a

reference work intended for identification (in their case the Treatise on Invertebrate Paleontology)

as a record of macro-evolutionary change, a possible approach would have been to plot family or

order diversities through time in the Compendium Index data. This, however, is impossible: if

the Compendium Index were arranged taxonomically as the Treatise is, over half of all described

species would fall into a single category—Class Angiospermae, Incertae Sedis—because they cannot

be firmly attributed to any modern order. Therefore, from the outset, the Compendium Index was

organized into a set of morphological categories to facilitate identification of fossils, based on aspects

of gross morphology like overall shape and pattern of veination rather than on phylogenetic principles.

The current index has 118 categories, which have been designed for further subdivision as groups

are studied in more detail. These Compendium Index Categories, or CICs, which are numbered

with three-digit numbers between 100 and 990, were originally illustrated and described in Ash

et al. (1999), and are listed in a slightly revised form, as they appear in Green and Hickey (2005),

in appendix C. They are based on characters like organ type (leaf, axis, reproductive structure),

petiolar attachment (compound, central or marginal), primary vein course (pinnate or palmate),

tooth presence, and tooth shape (serrate, dentate, or crenate). They are categories of convenience,

designed for quick, simple, morphological classification using readily observed features and applicable

to fossil plants in all degrees of preservation and to illustrations of variable quality. The theoretical

issues surrounding ecological interpretation of data from such a classification system will be dealt

with in detail in a future publication; here we are primarily concerned with identifying morphological
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patterns through time, not necessarily with relating particular morphological attributes to ecological

variables. It should be noted, however, that some of the patterns in leaf architecture that are reflected

in the CICs have been shown to correlate strongly with ecological and environmental variables (Bailey

and Sinnott 1915; Wolfe 1993).

The data that are currently available electronically reside in a computer database file (.dbf)

from which the actual data matrices used in the following graphs (see appendix A) were extracted.

Our analyses are based on the recorded numbers of species (or morphotypes or operational taxo-

nomic units) per time-division in each CIC. In some ways, this is roughly analogous to the initial,

coarsely resolved data on marine invertebrate diversity collected by Raup (1972), but because the

Compendium Index is organized by morphological category rather than by super-specific Linnaean

taxa, it does not suffer from the incomparability of taxonomic ranks in different groups. That is to

say, when we compare counts in two different CICs in the Compendium Index, we are not looking at

a measure of diversity (which is sensitive to the degree of splitting or lumping that has been applied)

but at the proportion of operational taxonomic units that have a particular morphology, which is

comparatively insensitive to such biases. In other words, some taxonomists may be ‘splitters’ and

others ‘lumpers’, but few systematically split ovate leaves and lump obovate leaves. In addition,

the organization of the Compendium Index by morphological category instead of by higher taxon

provides us with the ability to examine it for ecological rather than phylogenetic patterns.

Using shell commands and the open-source application R (R Development Core Team 2005),

we extracted and tabulated the number of described morphospecies from each time period in each

Compendium Index Category. At a coarse taxonomic level (for example Linnaean class), leaf shapes

uniquely identify phylogenetic groups, so we can equate groups of leaf shapes with clades or Lin-

naean taxa (Dimichele and others 2001). At higher taxonomic resolutions, however, this assumption

breaks down. Therefore to examine patterns through time in any more detail than by class (or at

best subclass), we need to think in terms of architectural groups that may share functional and

mophological attributes but are not necessarily genetically related.

Statistical manipulation at this stage has intentionally been restricted to an exploratory level

because there are issues of sampling and systematic bias that must be fully discussed before applying

specific confirmatory tests. While we are exploring the signal-to-noise ratio in the data and looking at

first-order trends and patterns, it seems relatively unproductive to depend on techniques of variable

reduction and parametric testing, though we do rely on relative correlations. It is easy to find

statistically significant effects in the fossil record; harder to determine what they signify. As the

data are of variable quality and unevenly distributed though time and space, we sometimes would

like to draw conclusions based on very small samples, while at other times very large samples tell
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us nothing of biological interest. For exploratory analysis of this sort, graphical display of the data

has proven to be the most effective tool (Tukey 1977; Tufte 1983). Despite the inevitable presence

of noise in the data, the patterns we can now identify are robust enough that we are confident they

will survive the cleaning up of the signal that is currently in progress.
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Figure 3.1: (A) Log-normal quantile-quantile plot of the counts in the Compendium

Index. This is a scatter plot of the quantiles of the log-transformed counts plotted

against the corresponding quantiles of the theoretical Gaussian distribution. Therefore

a straight line indicates log-normal distribution of the count statistics. (B) Bar chart

showing the actual counts in each Compendium Index Category (CIC). See appendix C

for a description of the categories.

Figure 3.1 shows the overall frequency distribution of species in the Compendium Index by CIC,

which is roughly log-normal, as is expected from a set of counts. When all the entries in the

Compendium Index are sorted by morphological category, the vector of counts obtained ranges from

almost 700 taxa with simple, entire, ovate, pinnate leaves with regular secondaries (category 116)

to only a few taxa with peltate, lobed leaves (category 155). This vector is shown as a profile in

figure 3.1B, with the actual number of species in each category plotted as a vertical black bar, and

in figure 3.1A the dotted curve is a plot of the counts plotted on a log-log scale against a theoretical
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Gaussian probability distribution function. In such a log-normal quantile-quantile plot, a variable

with a perfectly log-normal distribution will be distributed along a straight diagonal line.

Compendium Index records include representatives of approximately 840 floras, almost exclusively

from continental North America, but with a few additions from other parts of the world. By

the nature of the geographic distribution of geological strata, any one time period is likely to be

represented only by a small geographic area. For instance, the Turonian stage of the Cretaceous is

represented almost exclusively by floras from Greenland. The Compendium Index does, however,

include most the ‘classic’ American floras, including those described by Lequereux, Berrry, Knowlton,

etc., so whatever biases are introduced by the patchy nature of the fossil record, the analysis of the

Compendium Index should reflect the fossil record insofar as it has been cataloged by some two

centuries of paleobotanical investigation.

Table 1: Approximate number of floras represented in the Compendium Index in each time period.
TIME PERIOD APPROXIMATE NUMBER OF FLORAS NUMBER OF FLORAS WITH >20 SPECIES

Pleistocene 1 0

Pliocene 34 3

Miocene 106 12

Oligocene 31 6

Eocene 193 10

Paleocene 106 10

Maastrchtian 65 7

Campanian 36 2

Santonian 33 1

Coniacian 7 0

Turonian 8 0

Cenomanian 26 6

Albian 50 2

Aptian 47 1

Barremian 36 0

Neocomian 7 0

Malm 6 0

Lias 7 0

Dogger 10 0

Triassic 30 0

TOTAL 839 60

3.3 Results

The 118 morphological categories into which the Compendium Index species records are sorted can

also be lumped into aggregate groups which are synonymous with the higher Linnaean taxa used

by Niklas et al. (1985). That is, we can add together all the angiosperm counts, all the conifer

counts, etc., and plot the resulting sums as mountain charts through time, as I have done in figure
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3.2. These aggregate groups are plotted alongside a redrawn version of the familiar plot from

(Niklas et al. 1985:112). Note, however, that the data from Niklas et al. (figure 3.2A) are absolute

numbers of described species in each time interval, while the Compendium Index data (figure 3.2B

and 3.2C) are shown as the proportion of described species (or operational taxonomic units) in each

morphological category in each time interval. The Compendium Index data are plotted twice: once

averaged by epoch (figure 3.2B) and once at the finest chronological resolution now available (epoch

in the Jurassic and Cenozoic, age in the Cretaceous, figure 3.2C). I am in the process of refining

the chronological sampling by reference to the stratigraphic information in the Compendium Index.

On the extreme right (figure 3.2D), are shown the absolute numbers of cards in the Compendium

Index (which are roughly proportional to the numbers of described species). At the top (figure 3.2E)

are estimates of modern species abundances from Raven et al. (1999). The chronology used is the

Geological Society of America 1999 Geological Time Scale (Palmer and Geissman 1999) and the

values are plotted at the midpoints of chronostratigraphic divisions.
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Figure 3.2: Juxtaposition of the curves from Niklas et al. (1985) giving absolute species

diversities through time (A) with similar mountain plots showing the numbers of entries

in the Compendium Index (B, C) in the morphological groups corresponding to each

higher Linnaean taxon. Also shown are the absolute numbers of entries in the Com-

pendium Index in each time division (D) and estimates of modern species diversities

from Raven et al. (1999) (E). Note the smoothing artifacts like the implication in 2B

that there are a large number of Neocomian angiosperms: this arises from lumping all

Lower Cretaceous counts together in a single chronological bin.
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Regardless of whether one examines the absolute species diversity data from Niklas et al. (1985)

in figure 3.2A, or the proportional morphological data in 3.2B of the figure, it is apparent that

there is no discontinuity at the K/T boundary. The picture obtained of floral change through

time is uncannily similar to that provided by plate 56 in Ward (1883–1884), even to the extent of

duplicating a substantial drop in angiosperm diversity in the Turonian. Because sample sizes are

so low, we are not confident that this represents a true signal in our data, but the discovery of the

same pattern in Ward’s data raises the possibility that is is real.

The Compendium Index data do confirm a broad picture of relative floral stability since the

Campanian (logistic growth curve) that has already been proposed (Lidgard and Crane 1988), but

many of the criticisms of diversity-curve data are not applicable to our proportional morphology

curves: as discussed above, incomparability of higher taxa and biases caused by differing intensities

of study are automatically normalized by considering a proportional metric. Note also that in these

data, in contrast to those of Niklas et al. (1985), the expansion of angiosperms seems precipitous

(essentially taking place from the Albian to the Santonian stages of the Cretaceous), rather than

happening slowly over the course of the Late Cretaceous and Tertiary. Because proportional counts of

taxa in morphological classes are likely to reveal ecological dynamics while ignoring species turnover,

we can conclude that the ecological expansion of angiosperms was indeed more precipitous than their

rate of speciation: that is we see the broad-leaf angiosperms appear, restructuring ecosystems in

an explosive radiation, but because we are looking at morphological categories we do not then

notice the continued taxonomic turnover that we know occurred during the Tertiary. To use Gould’s

terminology (Gould 1991), angiosperms attained modern disparity levels by the end of the Santonian,

but may have taken the rest of the Cretaceous and all of the Tertiary to attain modern diversity.

Equivalently, it could be argued that there were as many species with angiosperm leaves (proportional

to non-angiosperms) in, for instance, the Campanian as there were in the Miocene, but they were

different species with similar leaves, and the replacement of one species by another with similar leaves

is invisible in our record of eco-morphological change (figure 3.2B and 3.2C) while it is apparent in

a diversity curve (figure 3.2A).

An intensification of this effect may come from the over-speciation of a number of early Late

Cretaceous floras by zealous splitters, but because we are dealing with proportions, this effect could

only be caused by inconsistent splitting of some morphologies more than others. (Note that this sort

of inconsistant splitting is possible, as when a group of people working on a particular taxonomic

group evolve a different implicit notion of the amount of morphological variation allowable at a

given taxonomic rank. Reduction to proportions will minimize this error, but it will not necessarily

eliminate it; therefore the resulting patterns will be most reliable when they are based on comparison
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of like with like as in the case of the angiosperm subset of the Compendium Index analyzed below.

Associated with the rise of angiosperms was a proportional decrease in the numbers of cycadophytes,

ginkgophytes, and pteridophytes, while the conifers remained relatively unaffected. This agrees with

the results of Lidgard and Crane (1988) and supports the contention of Taylor and Hickey (1992,

1996) that the the earliest angiosperms occurred in disturbed habitats.

Lumping the morphological categories until they map onto Linnaean classes provides an overview

of plant evolution through time and does not conflict with the story told by Niklas et al. (1985)

and Lidgard and Crane (1988). It provides, however, little additional detail. To describe the K/T

boundary dynamics in more detail, we can examine the categories (in this case just the angiosperm

leaf categories) individually instead of lumping them together so that they correspond to higher

taxa. Looking only at the angiosperm leaf categories (CICs 100–155) in each time interval (as is

done in figures 3.3, 3.4, and 3.5), we can then set about quantifying the degree of discontinuity

in eco-morphological dominance at the K/T boundary. First of all, however, we need a way of

measuring how different the leaf architectural profiles of different geological time periods are from

each other.

One way to address this question is by producing a bivariate plot with associated correlation

statistics. Figure 3.3 provides an example of such a plot of the counts in each CIC of the species

in the Compendium Index for the Maastrictian Age and the Paleocene Epoch, that is the stage

transition that corresponds to the K/T boundary. The CIC numerical codes and cartoons of the

leaf shapes they represent are plotted alongside the points in order to show which categories are

represented. The points lying above the diagonal are more abundant in Paleocene assemblages

while those lying below the line are more abundant in Maastrictian floras. The regression line, while

based on a relatively small number of points, has a slope significantly different from zero, and this

significance remains even if the two or three most influential points are omitted.

The correlation provides a rough measure of how similar the two sets of counts are. This mea-

surement is difficult to evaluate except in the context of comparative measurements, so in order to

determine whether the correlation between the Maastrictian and Paleocene is unusual, we must look

at it in the context of other correlations between successive time periods.

Figure 3.4A shows this comparison: the solid line shows the ordinary parametric autocorrelation

(Pearson’s product-moment correlation, r, of each time period with its neighbors), plotted at the

interval boundaries. The fine dotted line gives a 95% one sided confidence interval for these corre-

lations. I also calculated two non-parametric correlation coefficients, Spearman’s ρ, and Kendall’s

τ , shown by the two dashed lines. In general, these show the same patterns as the parametric

correlation coefficient, their lower statistical power does not matter in this comparative context,
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Figure 3.3: Comparison of Maastrichtian and Paleocene floras. In addition to the para-

metric correlation, r (formally, Pearson’s product-moment correlation coefficient), I have

calculated Spearman’s rank-order correlation coefficient, ρ, and Kendall’s rank-order cor-

relation coefficient, τ . For further details of the algorithms used see the man page for

cor.test() in R, and references therein. This plot shows the type of raw data from

which the correlation statistics that are discussed below were obtained.

and they depend only on the rank-order similarity of their arguments, so they are more likely to

be applicable to noisy and abnormally distributed data. Quantitative similarity measures like the
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also show similar patterns but have not been plotted

because it is not clear whether the ecological rational for using such measures applies in the case of

percentage counts in morphological categories.

Low correlations imply times of leaf architectural change; high values suggest floral continu-

ity. The trend line has no significant slope. From the figure, it is apparent that the Maastric-

tian/Paleocene boundary does not stand out as a low point, so we can conclude that it was not a

time of dramatic change in leaf architecture.
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In figure 3.4B the correlation of each time period with the present is plotted in the same way

that the autocorrelations were plotted in figure 3.4A; again the difference between the Maastrictian

and Paleocene does not stand out (if it did it would look like the vertical riser of a step), but in

this case there is a somewhat significant trend, which somewhat surprisingly remains even in the

absence of three outlying points. This provides an empirical test of the uniformitarian assumption

that modern floras provide unbiased estimators of the distribution of architectural characters in past

floras, which underlies the practice of estimating paleotemperatures from leaf morphology using leaf

physiognomy (Wolfe 1993, 1995; Wilf 1997). The negative trend in modern-fossil correlations from

left to right contradicts this assumption.

The argument that the Maastrictian/Paleocene (K/T) boundary does not stand out can also

be made statistically explicit by plotting the empirical distributions of the correlation coefficients

as histograms or smoothed densities as is done in figure 3.5 for all three correlation coefficients.

In each case the position of the K/T boundary in the distribution is shown. For each correlation

coefficient, the exact probability that the correlation at the Maastrictian/Paleocene transition is

significantly greater than the mean age transition correlation is dependent on the exact shape of

the distribution and since there are only eleven points the shapes of the distributions are poorly

constrained. Nevertheless in all three cases it is clear that the Maastrictian/Paleocene boundary is

not a low outlier.
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Figure 3.5: Plots of the empirical distributions of the three correlation coefficients (both

as histograms and as smoothed densities) make explicit what can also be seen from the

previous figures: that the Maastrictian/Paleocene (K/T) boundary is far from being a

low outlier.
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3.4 Discussion

Both the smooth curves across the Cretaceous-Tertiary boundary in figure 3.2 and the similarity

of the Maastrichtian and Paleocene floral profiles suggest that the K/T boundary event had little

lasting effect on the evolution of angiosperm leaf architecture. Qualitative appreciation of this point

initially led a number of paleobotanists to doubt the extinction mechanism proposed by Alvarez

et al. (1980) because of the apparent continuity of the plant fossil record examined at a resolution

of geological stage (Clemens et al. 1981). Examined at an increased stratigraphic resolution, as it

was by Wolfe and Upchurch (1986, 1987); Johnson and Hickey (1990), and Wilf and Johnson (2004),

the K/T boundary does indeed show a concentration of last appearances, though it is still not clear

that this concentration rises above a base extinction rate to a statistically significant extent. On the

other hand, as we decrease the chronologic resolution, we effectively smooth the time-series with a

low-pass filter. Comparing figure 3.2C with 3.2B, I accomplished an appropriate degree of smoothing

by increasing the temporal bin size, but the same results would have been achieved by a moving

average filter that replaced each value by the arithmetic mean of it and its neighbors. In this case,

the higher frequency dynamics that we avoid by discussing figure 3.2B in preference to 3.2C seem

to be due to small-sample effects. It is common for the quality of paleontological data to be too low

and irregular for routine application of statistical time series tools like autoregression and spectral

analysis.

It is worth examining in some detail, however, the apparent conflict between our data, which

show no significant changes at the K/T boundary and the reported 57% extinction of morphotypes

reported by Wilf and Johnson (2004). Two (non-exclusive) explanations for this difference present

themselves: first of all, it could be entirely an effect of time (or space) averaging: that is because

all our Paleocene data from North America are lumped together, we miss the dramatic changes

that appear in the beginning of the Paleocene because we can only see the overall epochal average.

Secondly, an examination of morphological attributes (which is in this context equivalent to an

examination of proportional representation in architectural categories) may reveal ecological stability

while a measure of species or morphotype diversity may show population level fluctuations. As Wilf

and Johnson (2004) point out, even 57% of morphotypes is not a particularly large extinction

compared with 95% of marine genera at the Permo-Triassic boundary or 100% of dinosaurs at the

end of the Cretaceous.

In order to see whether these differences were a result of looking purely at continent and epoch

scale averages, I collected the CIC attributions for 286 of the Hell Creek/Fort Union boundary

section morphotypes from Johnson (1989) though I could not obtain the appropriate morphotype

descriptions to recode the most recent data from Wilf and Johnson (2004). In figure 3.5 are plotted
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the profiles of four biozones defined by Johnson and Hickey (1990), three from the Hell Creek

Formation (HC 1–3), immediately below the K/T boundary, and one from the Fort Union Formation

(FU1), immediately above the boundary.

CIC Profiles of Johnson's (1991) Boundary Section Biozones

Nu
m

be
rs 

of
 m

or
ph

ot
yp

es
 in

 ea
ch

 C
IC

1
5

1
5

1
5

1
5

HC1

HC2

HC3

FU1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

15
4

15
5

16
0

16
1

16
2

16
3

16
4

17
0

17
1

17
2

18
0

18
1

18
2

18
3

18
4

18
5

18
6

19
0

20
0

21
0

21
1

21
2

21
3

21
4

21
5

21
6

21
7

21
8

21
9

22
0

23
0

23
1

23
2

23
3

23
4

23
5

23
6

23
7

23
8

24
0

30
0

35
0

40
0

50
0

50
1

50
2

50
3

50
4

50
5

50
6

50
7

50
8

50
9

60
0

70
0

71
0

80
0

90
0

91
0

92
0

93
0

94
0

95
0

99
0

Compendium Index Category (CIC)
Angiosperms Gymnosperms

Algae, etc.

Ferns

Sphenopsids

Lycopods
Galls

Indet.

C
R

ET
A

C
EO

U
S

TE
R

TI
A

R
Y

Figure 3.6: Leaf architectural profiles for each of the four biozones defined by Johnson

and Hickey (1990): Hell Creek (HC) 1–3 and Fort Union (FU) 1. In this representation,

there seems to be no dramatic change between HC3 and FU1, as one would expect if the

K/T boundary extinction had had significant ecological effects. The FU1 profile does

provide a slight echo of the fern spore spike following the K/T boundary, but otherwise

there is no convincing indication of a change in leaf architecture across the boundary.

The profiles of the biozones do not seem to look radically different from each other and certainly

the flora of the Fort Union biozone immediately after the K/T boundary does not seem to represent

a dramatic break from the earlier Hell Creek floras. With only four points in our little time series,

it is difficult to test this statistically, but again correlations among the zones give a certain ability

to measure similarities of the counts in each architectural category across the boundary.

Figure 3.7 shows pairwise plots of the counts from each of the biozones against the counts

from each other zone. The correlations amongst all of them are positive, but the weakest of the

correlations is indeed between FU1 and HC3. When empty and singleton categories are eliminated,
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Figure 3.7: Pairwise plots of the same four biozones whose profiles are shown in figure

3.6. Note that according to the correlation statisitics, the relationship between the Fort

Union flora and the floras of the three Hell Creek biozones is slightly more distant than

the relationships among the Hell Creek biozones. This supports the contention of Wilf

and Johnson (2004) that the K/T boundary was the most significant modification of the

flora during the 2–3 million year period represented by this composite section. Note that

for this plot the data have been jittered so as to reduce overplotting and zeros are left

in the data (which will naturally increase the apparent significance of the regression).

the HC3:FU1 relationship loses its significance at the 5% level, while the other pairwise comparisons

remain significant by at least some measure. Note that this is not a robust statistical result in which
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the HC3:FU1 comparison lacks real significance while the HC1:HC2 and HC2:HC3 retain it, but it

is clear that of the correlations, the HC3:FU1 is the weakest.
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153 floras, fossil and
modern described in Green
and Hickey (2003) and
including the 4 biozones
defined by Johnson and
Hickey (1990).
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Figure 3.8: Algorithmic hierarchical cluster map showing how the Hell Creek and Fort

Union biozones, despite spanning the K/T boundary, are better correlated with each

other than any one is with 149 other fossil and modern floras. The comparative data

comes from related work (Green and Hickey 2003). Note that the exact arrangement of

floras in such a dendrogram is sensitive to distance measure, data standardization, and

clustering method. The example presented here is for illustrative purposes only; it is not

possible to determine from it, what we have concluded from broader experimentation,

that the clustering of the Hell Creek and Fort Union floras is relatively robust.
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A final illustration of the similarity of Johnson and Hickey’s biozones to each other is provided

by a hierarchical cluster analysis. Though the particular arrangement of the floras is far from

robust (experimentation has shown that it is dependent on data pre-treatment, distance metric

and clustering method), the clustering of the biozones does continue to appear despite variation in

clustering technique. Thus we can conclude that the leaf architectural difference between the Hell

Creek and Fort Union floras is much less dramatic than most other differences between floras, fossil

and modern.

So by the leaf architectural or eco-morphlogical measure we are using, the K/T boundary shows

only a weak preeminence in a section representing about three million years. This suggests that

time and space averaging alone are not enough to explain our data: even when the plant record

is examined at the smallest possible temporal and spatial scale, the ecological effects of the K/T

boundary were not dramatic. The K/T boundary event does seem to have been marginally the most

important effect on plant systems in three million years, but the evolutionary question is whether

or not it had any effect that lasted on a longer time scale, and every examination of this question

seems to indicate that forests responded homeostatically to the K/T boundary event.

This is comparable to results obtained by Cantrill and Poole (2005), in the southern hemisphere

(Patagonia and Antarctica) where the K/T boundary is still visible in the fern spike, but minor,

transient, or totally absent in the macrofloral record. It is worth also comparing this result with

the analysis of the same boundary section by Labandeira et al. (2002), which showed a drop in

the diversity and variety of insect feeding traces on leaves at the beginning of the Paleocene. My

demonstration that leaf architecture did not change substantially at the same time, supports one of

Labandeira’s scenarios in which the disappearance of feeding traces was caused by insect extinctions:

a crash due to failure of demand rather than supply.

So in answer to the question: ‘How did the K/T boundary event affect the evolution of for-

est ecosystems?’ the response suggested by these data is ‘Not fundamentally.’ Whatever species

extinctions occurred must have been replaced within a few million years by migration of closely

related species or re-radiation into empty niches. At the scale at which we can examine it, the plant

macrofossil record shows no dramatic change in ecosystem structure, though of course the possibility

remains likely that even shorter term fluctuations were more dramatic. If all the forests in North

America were burned over in a single summer, that would clearly count as a dramatic ecological ef-

fect, but it seems intuitively likely that such an effect would have few or no effects that lasted longer

than the time taken for the forests to regrow. The effects of migration plus seed banks would make

any lasting change in the physiognomy of forests unlikely, and these theoretical predictions are (in

general terms) substantiated by natural experiments like the catastrophic destruction of Krakatoa
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in 1883 (Thornton 1996). For plants the boundary event should be considered a ‘mass death’ not a

‘mass extinction’, and this raises the evolutionary question of whether plant ecosystems have ever

suffered a setback comparable to animal mass extinctions.

An important caveat is that the data shown here capture information on the architecture of

woody dicot leaves. Therefore what I am arguing is that the leaf-litter on the forest floor in the

early Cenozoic was not significantly different from the leaf-litter on the forest floor in the late

Cretaceous. The spread of grasslands in the Miocene, of course, restructured terrestrial ecosystems

in a way that is probably almost as dramatic as the rise of angiosperms, but notice that it is

entirely invisible in our data. One reason for this invisibility is that all angiosperm leaf forms were

lumped together in figure 3.3, so in that particular representation differences in leaf shape among

angiosperms are not apparent. More important, however, is the sampling bias in the fossil record:

because the fossilization potential of herbaceous plants is vanishingly small in the climatic and

edaphic conditions in which grasslands occur, we expect grasslands to go essentially unrepresented

in the plant macrofossil record. So we should interpret our data as a history of lowland forest

ecosystems, not as a history of terrestrial environments. The rise of angiosperms and the extinction

at the K/T boundary were two of the most dramatic evolutionary events that restructured terrestrial

ecosystems during the post-Paleozoic. Traditional descriptions of plant evolution and an examination

of figure 3.3 substantiate the importance of the rise of angiosperms in the middle of the Cretaceous,

but the K/T boundary event seems to have had no lasting effect on leaf architecture, and therefore

by analogy on the ecological structure of forests.

A final theme for discussion is the potential for generalizing the use of morphological bins rather

than diversity in the production and analysis of paleontological time series. Diversity, which is

peculiarly susceptible to biases due to differing taxonomic practices, has been relied upon very

heavily not only by paleontologists, but also by modern ecologists who have taken it to be one

of the most fundamental attributes and best scalar descriptions of an ecosystem. Nevertheless,

as criticism of Raup and Sepkoski’s data base, for example by Peters and Foote (2001), and the

ecological literature on the connection between diversity and stability in ecosystems (Tilman 1999)

have shown, evaluating the meaning of diversity can be highly problematic. Because of the nature

of macrobotanical remains and the way they can best be organized, our data set suggests a useful

alternative or supplement to the diversity curve for summarizing evolutionary change: choose a set

of morphological bins (or, alternatively, a set of morphological variables), split the data set into the

smallest units possible (operational taxonomic units), and record their proportional representation in

each morphological bin or variable. Like any proportional metric, this minimizes the effect of biases

in time series data by automatically normalizing for sample size, intensity of study, interval length, et
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cetera. Moreover, it provides a multivariate data set rather than the univariate time series provided

by a measurement of diversity. Since environmental variables frequently influence morphological

attributes in simple, predictable ways, functional explanation is also easier than in the case of

diversity, which can interact with the environment in complex ways. Most importantly, diversity is

a single variable known to be controlled by a number of factors and it is manifestly impossible to de-

convolute complex interactions of many variables from a single composite measurement. Proportions

of operational taxonomic units in morphological classes provide multivariate data distributed through

time, so if the difficulties of dealing with correlated, non-normal, multivariate data can be overcome,

then we have a reasonable hope of being able to investigate macro-ecological change in the remote

past in more detail.

3.5 Conclusions

In the Compendium Index data, we find no indication of a change in the leaf architectural profiles

between the Maastrictian and the Paleocene comparable to the changes that are seen earlier in the

Cretaceous, associated with the rise of angiosperms. This lack of change at the K/T boundary

highlights the influence of evolutionary innovation compared with catastrophic extinction on evolu-

tionary history. Also, if we accept that there is a connection between ecosystem properties and leaf

morphology, we must conclude that plant extinctions at the end of the Cretaceous, while they may

have selectively eliminated certain species, do not seem to have restructured plant ecosystems in a

way that was significant on an evolutionary time scale. Finally, in comparison with datasets with

better stratigraphic resolution, the patterns identified show the importance of temporal scale in any

discussion of macroevolutionary dynamics.
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4 The problem of irregular sampling: A meta-analysis of the

Climate Leaf Analysis Multivariate Program

The Climate Leaf Analysis Multivariate Program (CLAMP) is an established methodology for phys-

iognomic analysis of dicot leaf floras. This chapter uses a meta-analysis of four studies that provide

CLAMP data on 245 floras from Asia, Africa, and North and South America to demonstrate the

application of a new analytical methodology for the exploration of the relationship between leaf

morphology and environment. This methodology involves the application of a generalized ‘pairs’

plot or scatter plot matrix (SPLOM), a form of graphical analysis for multivariate data. It is com-

pared with the results from regression, hierarchical cluster analysis, principle components analysis,

and canonical correspondence analysis. Analysis of the available data using pairs plots reveals ex-

tensive multiple covariation among explanatory leaf physiognomic variables and identifies sources

of systematic error that eigenvector ordination methods tend to conceal. Pairs plots provide a sup-

plementary method for analyzing complex multivariate data on leaf physiognomy and contribute to

biological understanding of leaf–environment interactions. Because pairs plots allow more flexible

investigation of multivariate data than existing eigenvector and regression-based approaches, they

may prove useful no only for analyzing CLAMP data, but also in exploring multiple covariation in

other complex paleontological data sets.2

4.1 Introduction

As paleontological data become more quantitative, multivariate, complex, and voluminous, the choice

of tools for data analysis acquires a greater influence over the biological and geological conclusions

that are drawn from a given body of data. Either the data must be processed, summarized, its

dimensionality reduced, and its details obscured; or we need new tools to handle the presentation

and publication of larger, more complex data sets. In this paper, one such new tool—the ‘pairs’

plot—is suggested as a way of improving the standard procedures for examining the relationship

between leaf architecture and environment.

The Climate Leaf Analysis Multivariate Program (CLAMP) is a method of analyzing fossil

leaf assemblages or floras (specifically those deriving from the woody dicotyledonous component of

forest ecosystems) by quantifying a set of significant morphological or architectural leaf variables

and relating these variables (averaged over the flora) to climate parameters. Such a procedure also

allows estimation of ancient climate parameters by uniformitarian extrapolation of patterns found in

the distribution of leaf attributes in modern vegetation (Wolfe 1993, 1995; Wolfe and Spicer 1999).

2The material in this chapter has already appeared in print as Green (2006).
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This general notion, which is sometimes referred to as ‘leaf physiognomy’, has been accepted

since the early twentieth century when Bailey and Sinnott (1915) pointed out the strong correlation

between the temperature in which modern forests grow and the proportion of the species that

compose them that have ‘entire’ (i.e. untoothed) leaves. From this observed correlation in the

modern world, a determination of the percentage of species with entire margins in a fossil flora

allows the estimation of the temperature in which it grew. With the introduction of computers that

could handle algorithmic classification and ordination of multivariate data, Wolfe (1993) proposed

a multivariate method of coding leaves (originally based on 29, but later updated to 31 variables)

that was intended both to improve the precision of temperature estimates over the univariate linear

regressions that had preceded it, and to allow the estimation of other climatic variables.

In addition to temperature, other variables that have been more-or-less successfully estimated

using CLAMP data are precipitation (e.g. Wilf et al. 1998), and moist enthalpy, which can be

used to calculate paleo-elevation (e.g. Forest et al. 1999). The linear relationships between leaf

size and precipitation and between leaf physiognomy and moist entropy are less clear than the

relationship between leaf margins and temperature. As (Kennedy 1998:32) points out: ‘It appears

that CLAMP provides a relatively accurate estimation of temperature, but only a general estimation

of precipitation.’ Other variables (including many related to timing of changes in temperature

and precipitation, like growing season precipitation, or warm month mean temperature) have been

studied less extensively.

Despite the relatively widespread application of CLAMP methods, its procedures have been

criticized as overly complex and no more informative than simple regression models (Wilf 1997;

Wilf et al. 1998). Nevertheless it provides the only well-known procedure for collecting multivariate

data on leaf morphology and in certain contexts has become a standard way of determining ancient

terrestrial climatic parameters. Therefore the focus is almost exclusively on the CLAMP method,

though some of the issues identified may also apply to other recent leaf physiognomic studies like

the ‘digital’ approach of Huff et al. (2003), and Royer et al. (2005). Much of the debate about the

advantages of the CLAMP method over various regression models centers around statistical details:

the goal has been to maximize the ‘explanatory power’ of the method and minimize the standard

errors of the temperature estimates that it provides. This may not, however, be the best way to

choose an analytical methodology, because we have no satisfactory mechanistic explanation of the

relationships between most leaf morphological characters and climatic variables. Thus we are by

definition engaged in data analysis: that is, we are trying to determine what measured quantities

signify and to design empirical models to predict them, not trying to test models based on theory

against real data. Minimizing analytic error and maximizing explained variance produce a model
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that best explains a given set of data. Whether this model will ever explain any other data, be of

practical predicative utility, or suggest fruitful lines of future inquiry, is a very different question.

In the following consideration of the available data, several issues with the CLAMP method

that ought to be addressed become apparent. The focus throughout is on the analytical choices

made, not on the collection of raw data: for the purposes of this discussion, it is assumed that the

matrix of CLAMP scores is a relatively good reflection of the woody dicot leaf forms present in a

living flora. No coding scheme is perfect, but the CLAMP method is the only such coding method

that has been widely applied. In contrast, the statistical methods for analyzing CLAMP data

represent only a small fraction of the available procedures for multivariate data analysis. Therefore,

it seems necessary to explore to what extent the results of a CLAMP analysis are sensitive to the

analytical methods chosen and to inherent biases in the data. Are the eigenvector and regression

techniques that are generally applied to these data appropriate? What other techniques should be

tried? In short: how can we improve the methods used to analyze CLAMP data? The alternative or

supplementary analytical program proposed by this paper is based on graphical data analysis using

pairs plots and seems to show substantial advantages over eigenvector approaches for exploring the

relationships between dicot leaves and the environments in which they grow. Though the focus of

this examination is specifically aimed at one type of paleobotanical data, the general issue of whether

exploratory graphical analysis is more appropriate than data-reduction is applicable to many other

paleontological data sets.

4.2 Materials and Methods

The data available for this analysis come from four studies. The first and largest, wolfe173, is

an updated version of the data published by Wolfe (1993), sometimes referred to as ‘CLAMP 3B’

(e.g. in Jacobs 2002). It is available on the web as two Excel spread sheets (.xls files) containing

respectively the morphological and environmental data for 173 floras, points representing which are

colored black in the figures in this paper. For the 103 floras that were published in 1993, the number

of species in each flora and its latitude, longitude, and elevation were typed in from Wolfe (1993).

The geographical distribution of this data set is mainly restricted to the continental United States

and Japan, though there are a few floras from Alaska and continental east Asia. As of April, 2005

these data could be downloaded from the web at:

<http://www.open.ac.uk/earth-research/spicer/CLAMP/Physg3ar.xls> (the climatic variables) and

<http://www.open.ac.uk/earth-research/spicer/CLAMP/MET3AR.xls> (the morphological leaf scores).

The second data set, jacobs, is from Jacobs (1999, 2002) which give CLAMP scores and asso-

ciated environmental data for 30 floras in tropical Africa. This study used the original 29-variable
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coding scheme, so there are two variables with all values missing. Points from jacobs are colored

red in the figures in this paper. The third data set, gregory, is from Gregory-Wodzicki (2000),

provides CLAMP scores and environmental data for 12 floras in Bolivia, and is colored green here.

Finally, Kowalski (2002) provides CLAMP scores and environmental data for 30 floras in tropical

South America, which are represented by blue points here.

The data in jacobs, gregory, and kowalski were scanned in from tables in the cited publica-

tions, processed for automatic text-recognition and then hand-edited and spot checked for accuracy.

The data were read into the open-source program R (R Development Core Team 2005) from tab-

delimited text files, which are provided in appendix A, and preprocessed so that all studies were in

comparable form. The code used is given in the script file in appendix B. The data matrices are not

printed because all the data have appeared in print before.

The completed data set consists of 245 floras and is stored as a series of data frames in R with

the suffix -all for the raw frames containing both morphological and environmental data, and a

suffix -clamp for the cleaned CLAMP scores. The complete data set is all, and the supplementary

material typed in from Wolfe (1993) is a separate data frame called wolfe1993. Stranks (1996)

provides additional data from New Zealand that have not yet been processed.
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Table 2: Variables in 31-dimensional Matrices

VARIABLE NAME FROM Wolfe (1993) ABBREV. USED HERE COMMENTS

1 Lobed Lobd

2 No.Teeth Entr

3 Regular.teeth TReg

4 Close.teeth TCls

5 Round.teeth TRnd

6 Acute.teeth TAcu

7 Compound.teeth TCmp

8 Nanophyll ZNan Missing in jacobs

9 Leptophyll.1 ZLe1

10 Leptophyll.2 ZLe2

11 Microphyll.1 ZMi1

12 Microphyll.2 ZMi2

13 Microphyll.3 ZMi3

14 Mesophyll.1 ZMe1

15 Mesophyll.2 ZMe2

16 Mesophyll.3 ZMe3 Missing in jacobs

17 Emarginate.apex AEmg

18 Round.apex ARnd

19 Acute.apex AAcu

20 Attenuate.apex AAtn

21 Cordate.base BCor

22 Round.base BRnd

23 Acute.base BAcu

24 L.W.< 1:1 Rlt1

25 L.W.1-2:1 Rb12

26 L.W.2-3:1 Rb23

27 L.W.3-4:1 Rb34

28 L.W.> 4:1 Rgt4

29 Obovate SObo

30 Elliptic SElp

31 Ovate SOvt
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The 31 physiognomic variables described in Wolfe (1993, 1995) are listed in Table 1. Unfortu-

nately, unless growing season precipitation is taken to be the same as annual precipitation, the only

environmental variable that appears in all four data sets is MAT, so our comparison of different

studies is restricted to a single response variable. This is unfortunate because the main point of ap-

plying a multivariate framework is to elicit information about multiple response variables. Because

little of the true uncertainty in a temperature estimate comes from analytic error in the explanatory

variables (this contention is defended below), it is highly unlikely that a multivariate framework will

really improve temperature prediction much, however much it can be made to reduce residual error

of the regression.

4.3 Results

Exploring the relationship between a single pair of variables is simple and intuitive. For instance,

as is well-known, a plot of the percentage of untoothed leaves (P) against mean annual temperature

(MAT) shows a strong linear relationship. Figure 4.1 shows this relationship by plotting all available

CLAMP data along with associated least-squares regression lines. The regression line for all the data

is shown as a dotted line and limiting the regression to the floras for which information is available

on the total number of species coded does not change the line perceptibly. The points are colored to

show which study they came from and the thicker, colored lines show the results that are obtained

when separate regressions are performed for each study. These regression lines are cropped to the

extreme ranges of each data set, which are shown by colored bars near the edges of the plot.

Above and to the right of the main bivariate plot are histograms showing the marginal distri-

butions of each variable. Note that both of these distributions are polymodal, probably because of

irregular geographical sampling: there are relatively few floras representing the intermediate tem-

peratures because the latitudes that would supply them (the horse latitudes) are kept dry by Hadley

circulation and therefore have not provided as fertile a source for appropriate floras to study.
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Figure 4.1: Comparative bivariate plot of temperature (MAT) against percentage un-

toothed leaves (P) for 245 floras and four studies, color-coded by study. Least-squares

regression lines, marginal distributions, regression statistics, and the approximate geo-

graphical locations of the study areas are also shown. Points for which data are available

on how many species are represented have error bars showing plus and minus the bino-

mial sampling error. The size of the point plotted is also proportional to the sample size,

except in the case where data are missing. The same colors representing the four studies

are used in all subsequent figures.



It is evident from this univariate exploration that the ‘study effect’ (the effect on the regression

line of which study the data is drawn from) is important, though it cannot be determined from this

representation whether it is due to poor repeatability of the coding or whether it is caused by spatial

autocorrelation. In this regard, note how the slope of the regression line in the two South American

studies (gregory and kowalski) is very similar, though the intercepts differ, while Jacobs’s African

data have a slope that is quite different from that found in the other three (predominantly New

World) studies. This phenomenon of slope having a greater spatial autocorrelation than intercept

has also recently been pointed out by Mosbrugger et al. (2005). This incomparability of models

based on training sets from different regions has also been frequently remarked upon (Stranks 1996;

Jacobs 2002; Spicer et al. 2004; Greenwood et al. 2004), but with equal frequency has been ignored

when citing binomial sampling errors or standard deviations as if they were true uncertainties.

To expand our consideration from one explanatory and one response variable to 31 explanatory

and one response is not trivial. Perhaps the simplest solution is the reduction of all 31 explanatory

variables to a single distance metric. Clustering the available 245 floras hierarchically shows imperfect

clustering by study (the ‘blocks’ of color) in figure 4.2, which shows dendrograms produced by

an agglomerative hierarchical algorithm using the Euclidean distance metric under two clustering

procedures (single-linkage and complete linkage), with different properties. (Single linkage clustering

finds spherical clusters of objects in n-space; complete linkage finds strings of closely-connected

objects.)

With a few exceptions (e.g. Traiser 2004) such clustering procedures have not been used ex-

tensively in leaf physiognomy, perhaps because they produce no explicit models or quantitative

estimates of independent variables, but merely give a visual display of similarities among floras.

From such a display, we can nevertheless qualitatively conclude that the studies do cluster together,

but not without noise.

Much more prevalent—perhaps even ubiquitous among explicit considerations of CLAMP data—

are eigenvector techniques for rotating multivariate vector spaces and re-projecting data along a few

major axes of variation. The simplest and most general of these is principle components analysis

(PCA). Originally Wolfe (1993) relied on correspondence analysis, and then (in Wolfe 1995) switched

to canonical correspondence analysis, or CCA (Ter Braak 1986). Both methods were specifically de-

signed for comparison of environmental data with species distributions, and have become fashionable

in community ecology. Ter Braak (1986) makes it very clear, however, that:

‘The rationale of the technique [CCA] is derived from a species packing model wherein

species are assumed to have Gaussian (bell-shaped) response surfaces with respect to

compound environmental gradients.’ (Ter Braak 1986:1168)
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Complete Linkage Dendrogram

Single Linkage Dendrogram

Figure 4.2: Complete linkage (top) and single linkage (bottom) agglomerative dendro-

grams colored by study showing (imperfect) clustering by study and area for 245 floras

clustered according to the CLAMP variables.

and that

‘The vital assumption is that the response surfaces of the species are unimodal, the

Gaussian (bell-shaped) response model being the example for which the methods perfor-

mance is particularly good. For the simpler case where species-environment relationships

are monotone, the results can still be expected to be adequate in a qualitative sense....The

method would not work if a large number of species were distributed in a more complex

way, e.g., bimodally.’ (Ter Braak 1986:1177)

There are a priori reasons to expect species to have unimodal or linear distributions along en-

virnomental gradients, but this logic does not necessarily hold for morphological variables like the
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proportion of leaves with attenuate apexes. As can be seen in the 9th and 30th rows in the 32nd

column of figure 4.5, discussed below, some of these relationships between morphological variables

and temperature are arched or parabolic. Therefore the theoretical applicability of CCA to mor-

phological variables averaged over floras on a continental or global scale is highly questionable. Like

many other statistical methods, CCA is also vulnerable to non-linearity and multiple colinearity:

‘When the data are collected over a sufficient habitat range for species to show non-

linear, nonmonotonic relationships with environmental variables, it is inappropriate to

summarize these relationships by correlation coefficients or to analysis the data by tech-

niques that are based on correlation coefficients, such as canonical correlation analysis.’

(Ter Braak 1986:1167)

and

‘When the environmental variables are strongly correlated with each other—for ex-

ample, simply because the number of environmental variables approaches the number of

sites—the effects of different environmental variables on community composition cannot

be separated out and, consequently, the canonical coefficients are unstable. This is the

multicollinearity problem.’ (Ter Braak 1986:1170f.)

Many statistical procedures—including simple linear regression—work in practice even when their

assumptions are unrealistic, so this alone would not invalidate the application of CCA to CLAMP

data. The argument made here is not that CCA produces incorrect results, but merely that the

ubiquitous application of it to CLAMP data may be evidence of excessive analytical rigidity.

Most publications explicitly using CLAMP have followed Wolfe’s lead even to the point of using

Excel spreadsheet macros in the files that can be downloaded from the CLAMP website and a

commercial program called CANOCO (Lepš and Šmilauer 2003) specifically designed to perform

CCA. In fact CCA is now available in many general-purpose statistical packages, including three

different implementations for R, and therefore continued reliance on compiled, proprietary software

seems additional evidence of methodological canalization. As figure 4.3 illustrates, moreover, the

analysis of CLAMP data is not a case in which PCA and CCA produce significantly different results:

the top two bivariate plots are of principal components; the bottom two are canonical correspondence

axes.

Note how in the upper left quadrant of figure 4.3, the bivariate plot of the first two principle

components clearly discriminates kowalski from the other two studies. When jacobs is added,

however, (the upper right quadrant of figure 4.3) the gap seems much less distinct. This illustrates
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Figure 4.3: Principle components analysis biplots (top) and canonical correspondence

analysis biplots (bottom) of the data. The left pair of biplots uses all 31 variables

present in three of the studies; the right pair reduces the number of variables to 29 and

shows all four studies. Note the basic similarity between the PCA and CCA plots: the

scattters of points are viewed from different angles, but the relationships between studies

are similar.
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how sensitive this form of analysis is to sampling. The more data that are added, the harder it is

to discriminate clusters that looked distinct when there were fewer points. Although only PCA and

CCA have been tested, it is difficult to imagine a realistic situation in which other related eigenvector

methods would lead to radically different interpretations of CLAMP data, although they may—like

PCA and CCA—differ in the exact values they produce.

Both in the case of hierarchical cluster analysis and eigenvector analysis, it is apparent that the

study effect contributes some structure to the data but by no means determines them. Formally,

we could also use the multivariate t test (Hotelling’s T 2) to check the pairwise null hypotheses of

multivariate equivalence of means. In all (
4

2
) = 6 cases we are forced to reject the null with p-

values less than 10−6. In simple terms, the studies could not possibly all be equivalent. Note that

the Hotelling code (see Green 2006) can not deal with missing values, so the number of variables

had to be reduced to 29 in the three cases out of the six pairwise comparisons where variables were

missing. Whatever the statistical logic, the data are clearly affected by the source from which they

were obtained, though it cannot be determined with the available information whether this is due to

the studies being in different geographic regions or whether people actually code leaves differently.

A dendrogram reduces 31 variables to a single distance metric, eigenvector methods reduce 31

variables to a few principle components, of which two are shown in figure 4.3. What about the

remainder of the variables? One response is: the first two principle components account for a large

proportion of the variance, so the other variables do not matter much. This seems to be a limited

way of looking at the process of data analysis: if only the axes of maximum variance are of interest,

then why collect multivariate data? Multivariate data are often collected to answer more than

one question and a variable that answers a particular question (like the presence of teeth answering

questions about temperature) may say nothing about another question (regarding, for instance, plant

growth form). To choose variables exclusively from mathematical criteria like variance maximization

seems to abdicate the responsibility for interpreting results biologically.

One way of looking at more variables is called a ‘generalized draftsman’s display’ by Chambers

et al. (1983), a scatter plot matrix (SPLOM) by Cleveland (1985) and Basford and Tukey (1999) or,

more simply, a pairs plot. Figure 4.4 shows all the pairwise relationships between the original two

variables plotted in figure 4.1 (P and MAT), the first two principle components (PC1 and PC2),

the first canonical component (CA1, the primary axis corresponding to the matrix of sites) and the

first constrained canonical component (CCA1, the primary axis corresponding to the environmental

matrix).
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Figure 4.4: Traditional pairs plot as used in Basford and Tukey (1999). This is simply a

matrix of scatterplots showing the relationships between each pair of a set of variables.

All the data here are restricted to the original 29 CLAMP variables. In particular,

note the similarity between PC1 and CCA1, demonstrating how little it matters which

eigenvector method is chosen. Plots above the diagonal are inverses of the plots in the

lower diagonal. Note that the plots in the third row, second column and sixth row, fifth

column are exact duplicates of the right-hand two plots in figure 4.3.
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As can be seen, a pairs plot allows the plotting of a very large number of multivariate data

in a compact form. The question then arises: what is the value added by eigenvector methods of

data reduction if it is possible plot and examine the raw data themselves? In figure 4.5, all the 31

explanatory variables and MAT are presented in this pairwise fashion, with additional details as

described in the figure caption.

This is a very concentrated way of presenting data; it plots 32 × 245 two-digit numbers, the

equivalent in characters of about twelve and a half manuscript pages of text. Each of the small plots

above the matrix diagonal is a similar bivariate plot showing the relationship between two of the

32 variables. Thus the scatter plot in the 32nd column and 2nd row of the pairs plot is a reduced

version of figure 4.1; it is simply the bivariate plot of P against MAT. The second and 32nd of the

diagonal cells also correspond to the marginal histograms in figure 4.1. The shadings below the

diagonal are obtained by performing four two-sided hypothesis tests for each cell:

H0: slope of the least squares regression line = 0

H0: Pearson’s product-moment correlation coefficient = 0

H0: Spearman’s rank order correlation coefficient = 0

H0: Kendall’s rank order correlation coefficient = 0

The cell is colored white if the mean of the three correlation coefficients is positive and if all tests

reject H0; black if the mean of the three correlation coefficients is negative and all tests reject H0;

and medium grey if all tests fail to reject H0. If some but not all of the tests reject H0, the cell is

colored light grey or dark grey depending on the sign of the mean of the correlations of the tests

that are significant. In all cases the color of the text is black if the mean of the three correlation

coefficients is positive and white otherwise. All tests are made at the level α = 0.05 / number of

comparisons, where the number of comparisons is (number of variables) × (number of variables - 1)

/ 2, i.e. the 5% level with Bonferroni correction for multiple comparisons.

This representation of the data allows us to examine complex multiple-covariation among the

explanatory variables in detail. For instance, compare the second column with the third-through-

seventh column block. They are inverses of each other, as they must be, because the second column

represents the percentage of species lacking teeth and the third-through-seventh columns give the

percentage of species with particular types of teeth. Another interesting block of covarying values is

provided by the leaf sizes: columns and rows 8 through 16. Here, the smallest four leaf size categories

are all strongly positively correlated with each other as are the largest four leaf size categories, while

there is a strong negative correlation between the small and large blocks. Only the middle three

size categories are not strongly collinear. Graphical display of this sort of data makes the strong

covariation among the variables apparent and indicates that any statistics calculated from them that
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See Plate 1

Figure 4.5: Elaborated pairs plot of 31 explanatory and one response variable. The

variables are represented along the top of the matrix by the figures from Wolfe (1993)

that were originally used to illustrate them, and along the left side by their abbreviated

names. In two cases—‘teeth regular’ and ‘teeth close’—the line drawings colored pink

also show the opposite of the character being coded, ‘teeth irregular’ and ‘teeth distant’.

Groups of related variables are shown by the colored bars along the bottom and left

and those groups of related variables that are constrained to sum to 1 are so marked

along the bottom of the matrix. Above the diagonal are scatter plots like the example

shown in figure 4.1; below the diagonal, the white, black, and grey squares show whether

the relationships between the variables are statistically significant. The white squares

show a strong positive relationship between the variables, the black a strong inverse

relationship, and the intermediate shades of grey show weaker or absent relationships.

Along the diagonal are plotted histograms of each of the 32 variables (the marginal

distributions for the bivariate plots).
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assume independence should be treated with caution.

At such a small scale, it can be difficult to see details of the scatter plots, so figure 4.6 shows

another pairs plot of a subset of the variables.
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Figure 4.6: Pairs plot of selected variables. ρ is Spearman’s rank order correlation

coefficient; τ is Kendall’s rank order correlation coefficient; cor is the ordinary (Pearson’s)

product-moment correlation coefficient; and the r2 and p-values relate to the least-squares

fitted line. Where the associated correlation tests (and in the case of the p-value, the

regression) are significant at the 5% level, the statistics are followed by asterisks. The

blocks are white with black text if the mean of the three correlations is positive and all

four of the tests are significant, and they are light grey with black text if some, but not

all of the tests are significant. The blocks are colored black and dark grey with white

text in the reverse scenarios. If none of the tests are significant, the blocks are a medium

grey and the sign of the mean of the three correlations is shown only by the color of the

text printed on them: black for a positive and white for a negative correlation.



In this plot, in addition to the scatterplot matrix above the diagonal, the numbers in the blocks

below the diagonal give all of the pairwise correlation coefficients (the two common non-parametric

correlation coefficients, Spearman’s ρ and Kendall’s τ as well as the ordinary product-moment cor-

relation coefficient) and the r2 and p-values for the least-squares fitted line.

This reduced set of variables could have been selected by a stepwise multiple regression procedure

with formal rules for adding or subtracting variables from a model based on information criteria.

This has been done and it is easy to produce models in which all terms are significant with r2 as

high as 0.8 and p < 10−16. Since there are several such stepwise techniques, all of which produce

about the same quality of model from different variables, there is no reason to choose one model

over another, and the variables for this smaller plot were selected based on their perceived interest

instead of on a formal stepwise procedure.

This particular choice of explanatory variables happens to produce a multiple linear least-squares

model for MAT with r2 of 0.86 and p < 10−16; adding a factor to the model showing which study

each observation came from as an additional explanatory variable increases the r2 significantly to

0.88.

These models could certainly still be improved further by continued massaging (for instance,

interactions, non-linear terms, and variable transformations were not even tried). It does not seem

valuable, however, to spend time massaging a model until the issues that the univariate case brought

up (like incomparability of studies) are taken care of.

4.4 Discussion

The CLAMP method can be criticized at two levels: data collection and data analysis. This paper

is concerned primarily with improving the methods of analysis, but there are a few problems with

the analyses that are based in the data collection.

First is the fact that the raw (by species) scores have, except in doctoral dissertations (Stranks

1996; Kennedy 1998) seldom or never been published. This means that some of the most important

and interesting questions about phylogenetic distribution of leaf morphological variables and the

differences among plants of different growth form (habit) can not be asked. Some recent studies like

that by Kennedy et al. (2002) have not even published the CLAMP scores averaged by flora, but have

only printed biplots of eigenvector loadings. This form of presentation is so highly processed and

incorporates so many assumptions that it makes interpretation of the results difficult and reanalysis

of the data impossible.

Second, the selection of characters in Wolfe (1993) was explicitly based on preliminary eigenvector
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analyses, for instance:

During one stage of the study, I expanded the character set to include about 20

character states additional to [the original 29]. Judging from eigenvalues and percent of

total variance accounted for, these characters either added nothing or even lowered both

eigenvalues and percent variance. (Wolfe 1993:20)

To reject potentially interesting variables from a coding scheme on the basis of low eigenvalues

and percent of variance accounted for is to allow the statistical horse to bolt: you proceed quickly,

but have little control over the direction you are traveling. Among the character states rejected,

were those relating to compound leaves, spinose teeth, and inrolled or thickened margins, all of

which have clear mechanical adaptive significance. If we hope to obtain ecological or environmental

data from leaf physiognomy as well as information about climate, such character states should be

retained.

The same criticism goes for lumping together characters like ‘teeth round’ and ‘teeth appressed’

merely because ‘combining the states produced both higher eigenvalues and percent variance’ (Wolfe

1993:24).

Thirdly, the description of some of the character states seems ambiguous. Though it is not possi-

ble without a comparative study to say for certain that interpretations of the character descriptions

would vary, it is not clear whether ‘0.25 if the teeth are both regular and irregular and some leaves

have teeth’ (Wolfe 1993:24) should be interpreted as ‘0.25 if the teeth are regular and/or irregular

and some leaves have teeth’ or as ‘0.25 if the teeth are all regular or all irregular and some leaves

have teeth’.

In the case of deeply lobed leaves, the leaf size is supposed to be scored from a single lobe, but

the aspect ratio and shape still refer to the overall leaf, whereas in the case of a compound leaf the

leaflet is what is scored for size, aspect ratio, and shape. This is particularly problematic in genera

like Rosa in which a plant can have compound, deeply lobed, and simple leaves on the same branch.

Fourthly, the scored variables are divided into sections relating to common topics. Leaf size,

for instance is coded as proportions of leaves falling into nine size classes. The scores in some of

these sections, like leaf size, aspect ratio, or shape must sum to one while the scores in the section

describing teeth and lobation do not have a constant sum. This means that the presence of teeth

is implicitly weighted more heavily in the overall description of the flora than, for instance, the leaf

size, and it is not clear that any normalization procedure can correct this bias. The restriction of

groups of variables to a constant sum introduces dependence and implicit weighting that are hidden

by eigenvector analyses but made apparent by a graphical approach (see figure 4.5).
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Despite these issues with the process of coding, no morphological coding scheme could be ideal

and these criticisms of CLAMP are offered in a spirit of improving what is the only such system

currently available in the published literature. In particular, Wolfe’s original article (Wolfe 1993) was

much more broadly focussed than some subsequent publications: a discussion of axes of variation

other than those corresponding to temperature and precipitation made it not only a contribution to

paleoclimatology but also ecologically and botanically interesting.

More important than these problems in the coding are the true uncertainties associated with

the estimation of paleoclimatic variables. It is generally accepted that the leaf physiognomy of a

flora indicates the general climate regime of the area in which it grew: ‘tropical’, ‘sub-tropical’, or

‘temperate’, and ‘wet’ or ‘dry’. These are categories that not only any botanist, but many laymen

would recognize from simple leaf silhouettes. Beyond this there remains doubt as to the degree of

precision and reliability that leaf physiognomy can provide, but there has been relatively little general

discussion of what causes the real uncertainty in the procedure of estimating ancient environmental

parameters from leaf morphology.

It is noticeable that two doctoral dissertations that have examined CLAMP data in detail are less

sanguine about the errors associated with the methodology than most published articles. Stranks

(1996) cautions that ‘the method is still in in a developmental stage with many questions remaining

unanswered’ (Stranks 1996:122) and ‘that a relationship exists between physiognomy and climate

is clear. Whether it can successfully be applied to fossil floras in order to extract climate and

altitude, however remains to be resolved’ (Stranks 1996:124). Though she does not use the term

‘spatial autocorrelation’, she correctly observes that ‘the response of southern hemisphere sites in

general cannot be compared to those of northern hemisphere sites’ (ibid) and Greenwood et al.

(2004) support this contention. Kennedy (1998) lists several sources of potential error and admits

that ‘qualitative sources of error, such as subjectivity in morphotyping and taphonomic bias, could

potentially introduce large amounts of uncertainty into palaeoclimatic interpretations’ (Kennedy

1998:20). In contrast to this conservatism, many publications suggest that: ‘CLAMP...is a powerful

paleoclimate proxy with the ability to yield quantitative data on past temperatures, precipitation,

growing season length, and humidity, as well as enthalpy’ (Spicer et al. 2005:429).

Some of the sources of error that must be dealt with are, in rough increasing order of relative

importance or difficulty of quantification:

1. Binomial sampling error. This is the simple and well-understood error associated with the

random selection with replacement of n leaves out of a population of which a proportion P have

untoothed margins. If this selection is repeated many times, the standard error of P should approach√
P (1−P )

n . This imposes a minimum error on the order of a few degrees with floras of about 30 species.
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In floras that have many more species (e.g. >100), the binomial error becomes insignificant (Wilf

1997).

2. Repeatablity of coding. At this stage, it is not clear what errors may be produced by different

people coding the same floras, so this potential source of error is not readily distinguishable from

spatial autocorrelation or the study effect discussed above. Future work will investigate this source

of error using blind experiments.

3. Spatial autocorrelation and irregular sampling. The current sampling distribution is very poor,

but can be improved by collecting more samples where they are lacking, by gridding the available

locality data on a raster and applying statistical tools spatially, and by creating spatially distributed

artificial floras from species range data as has been done by Traiser et al. (2005). Unfortunately,

climate station data are seldom or never available from exactly the same places as floras are collected.

Up to a point, this can be addressed by appropriate methods of interpolation, but errors introduced

by microclimatic variation and patchy species distributions may continue to remain problematic.

4. Inherent time-averaging. This is not an issue if MAT is the only dependent variable, but MAT

is a grossly time-averaged quantity that will be perceived differently if data on, e.g., mean monthly

temperatures are compared across studies. It is easy to illustrate how dramatically plants have

evolved to respond to the timing of temperature change: CAM plants open their stomata during

the night when it is cool and transpiration is reduced. As soon as one calculates average daily

temperatures—much less monthly or yearly means—from an hourly record, one loses the ability to

explain an entire evolutionary strategy that allows thousands of species of plants to exist. This

is an extreme example, but the more general point that different temporal scales will affect the

significance of variables like temperature must be taken into consideration.

5. Other sources of noise (elevation, microclimate, disturbance, soil type, systematics, taphon-

omy, etc.) All of these variables are known to be of importance at particular spatial and temporal

scales, and must be considered. Is the sample skewed by collection of more low-altitude floras than

high-altitude? Do secondary-growth (recently cleared) forests respond differently than primary for-

est? In the absence of clear answers to these questions about systematic biases, calculation of a

stochastic binomial sampling error becomes nearly irrelevant.

6. Uniformity through time. How far back in time can spatial patterns observed in the modern

day be extrapolated? This is a broad question facing all methods of reconstructing ancient climates;

a simple criterion that is often implicitly invoked is that a method must work increasingly well as it

approaches the present; hence error must increase as we go back in time.

The error figures usually associated with estimates of mean annual temperature (MAT) from leaf

morphology are usually one- or two-standard deviation analytic errors calculated by assuming only

85



binomial sampling error or normally distributed stochastic variation in the explanatory variables

and then propagating this error through a regression line. When the number of species increases

much beyond a typical 30, these analytical errors are dramatically reduced, which has led to the

appearance in the literature of, for instance, temperature estimates of plus or minus a few degrees

(Burnham et al. 2001; Kowalski 2002; Kennedy et al. 2002). Even errors of under a degree have

appeared, which as Miller et al. (2006) point out is incompatible with a rigorous error analysis of

the relationship between P and MAT.

Errors 4–6 may be ultimately unquantifiable and uncorrectable, but there is abundant evidence

that the issue of spatial autocorrelation can be handled. Work by Thompson et al. (1999) provides

graphical tools for plotting floras in ecological space and Traiser (2004) and Traiser et al. (2005) give

spatially distributed leaf physiognomic data from synthetic floras for the whole continent of Europe.

In concert with the sort of exploratory data analysis that is presented here and in chapter 6, these

techniques may make it possible, not only to improve estimates of terrestrial paleoclimates, but also

to extract additional types of data about how environments and plant ecosystems have changed

through time.

4.5 Conclusions

A graphical exploratory investigation of CLAMP data reveals further serious and unaddressed sta-

tistical issues with the standard procedures used to analyze the data. Exploration and estimation are

different goals. If the only utility envisioned for fossil leaf floras is the production of ever-more-precise

but possibly inaccurate climate estimates, then the current methods of publication and analysis of

CLAMP data are satisfactory. In order, however, to understand the ways in which plant leaves

respond to environmental stimuli in the context of real communities, we need application of looser,

more flexible tools for data analysis, an appraisal of uncertainty that accounts for systematic bias

and unquantifiable noise as well as trivial stochastic errors, and the publication of raw data in a form

that can be compared between studies. Graphical techniques like pairs plots are effective methods of

exploratory analysis of multivariate data, but theories of biological interest like mechanistic models

of leaf response to environmental variables cannot be tested against such data unless the standard

forms in which the data are currently published are extended to include the raw (by species) scores.

Leaf morphology remains a valuable and under-exploited source of multivariate data. The

CLAMP method is not ideal, but it it is the best source of data currently available. It can give sat-

isfactory results if the data it produces are published and analyzed appropriately. From a biological

as opposed to a strictly paleoclimatological perspective, appropriate analysis consists of taking the
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‘climate’ out of CLAMP and allowing multivariate data on leaf architecture to illuminate broader

ecological questions. The pairs plot as a tool for graphical exploratory analysis provides informa-

tion on complex covariation among leaf-physiognomic variables, and allow evaluation of systematic

errors in CLAMP data, neither of which can be done with eigenvector methods of data reduction

or with hierarchical clustering. This has the potential to make multivariate leaf-physiognomic data

interesting not only to paleoclimatologists, but also to plant morphologists and functional ecolo-

gists. Moreover, the exploratory graphical approach advocated here may prove valuable in other

paleontological data sets where current analyses obscure interesting detail in complex, multivariate

data.
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5 Leaf architectural patterns in space: Constructing syn-

thetic floras for North America

For almost a century, leaf margin analysis has been an important method of estimating Cenozoic

palaeotemperatures. However, the relation between the proportion of toothed versus entire leaves

and temperature has so far been calibrated and characterized using relatively small numbers of

opportunistically and irregularly collected floras. Here I present the results of a spatially-distributed

analysis of the relation between leaf margins and temperature for North America. I used species range

maps of native dicot trees to derive synthetic local floras for each 50 km grid cell in North America

and compared the percentage of entire-margined species with the mean annual temperature in each

cell. Leaf margin type for each species was assigned using illustrations from appropriate regional

North America floras. This analysis confirms a strong inverse relationship between toothed margin

percentage and mean annual temperature between 0 and 25◦C in eastern North America. The

estimated temperatures are roughly similar to those obtained from floras in east Asia and previous

analyses in North America, but the detailed curve is more complex, showing a distinct change in

slope above a mean annual temperature of 20◦C. 3

Wetter climate areas of the coastal western North Amercia do not show any significant correlation

between leaf margin percentage and temperature. This may be due to the confounding effect of

diverse topography, or it may be caused by the low diversity angiosperm tree flora of this area.

Like previous studies, this paper demonstrates that there indeed is a strong relationship between

leaf margin percentage and temperature on a regional scale in eastern North America. However the

relationship does not have the same linear behavior as results obtained from previous analyses. I

also discuss the implications of the results obtained here for palaeoclimatic reconstruction in the

context of other leaf margin analyses based on North American sites.
3Note on authorship: an article written collaboratively with Jonathan M. Adams and Yangjian Zhang of Rutgers

University containing the material in this chapter is also in review at the journal Global and Planetary Change.

Division of work between the author (WAG) and collaborators JMA and YZ was as follows: coding of taxa was

shared equally between WAG and JMA/YZ. GIS analysis used in this version was performed by YZ; an earlier

analysis based on a smaller data set was performed by WAG. Figures were produced by WAG. Text was produced

by WAG and JMA; this version has been edited to remove all wording identifiably from JMA. The coding done by

JMA/YZ relied on web searches by Latin name to reveal images and or descriptions of leaves, several of which were

inspected before assigning a categorization. The coding done by WAG relied only on published sources cited here.
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5.1 Introduction

It has long been known that trees of cooler climates in the northern hemisphere tend to have toothed

leaves, while trees with entire-margined leaves are more common in subtropical and tropical climates.

The adaptive significance of this relationship between leaf form and temperature remains un-

known. The presence of teeth has been related to herbivory (Brown and Lawton 1991), to efficiency

in the design of distributary networks (Givnish 1978), and to the deciduous habit (Baker-Brosh and

Peet 1997). Another hypothesis is that the thinner shorter-lived leaves of cooler climates require

teeth or lobes to allow them to flex in the wind without tearing (Baker-Brosh and Peet 1997). Most

recently, Canny (1990), Baker-Brosh and Peet (1997), and Royer and Wilf (2006) have developed

an explanation for the adaptive significance of teeth based on their ability to increase transpirative

water flow by decreasing the apparent thickness of the aerodynamic boundary layer around leaves,

thus supplying extra nutrients to toothed leaves early in the growing season when low evaporation

rates due to low temperatures limit photosynthesis.

Despite the continuing doubt as to the adaptive significance of teeth, linear models relating P

(the proportion of entire leaves in a flora) and MAT (mean annual temperature) have been used to

estimate past temperatures from fossil leaf floras since the early 20th century (Bailey and Sinnott

1915).

In the past 30 years, this relationship has been recalibrated many times using more data from

floras in North America by Dolph (1976, 1979), Wolfe (1979, 1993), Wilf (1997), and Kowalski and

Dilcher (2003). Leaf margin analysis has also been calibrated from modern floras elsewhere in the

world (Herman and Spicer 1996; Stranks 1996; Kennedy 1998; Jacobs 1999, 2002; Gregory-Wodzicki

2000; Kowalski 2002; Kennedy et al. 2002; Greenwood et al. 2004; Traiser et al. 2005), and used to

estimate palaeotemperatures in the Tertiary (Wing and Greenwood 1993; Wolfe 1995), around the

K/T boundary (Wolfe and Upchurch 1986, 1987), and as far back in time as the Albian (Miller et al.

2006).

In addition to examining leaf margins, Wolfe (1993), Wing and Greenwood (1993), Huff et al.

(2003), and Traiser et al. (2005) have also tried to improve temperature estimation by using multi-

variate leaf data, but the advantage of a multivariate approach has not been conclusively established,

so I restrict my current consideration to leaf margin analysis.

Most recently, Traiser (2004) and Traiser et al. (2005) have suggested the use of synthetic floras

for grappling with the spatial variation in the relationship between leaf physiognomic and climatic

variables in western Europe. In addition to considering a number of other variables, including

leaf size, they identified a general latitudinal trend in leaf margin percentages, but the narrow

temperature range in the moist climates of Northern Europe (southern Europe is dominated by
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more arid Mediterranean climates with a precipitation-limited winter growing season) limits the

applicability of their results in North America, which has a far greater range of temperatures in the

moist eastern forest zone, ranging from boreal in Canada to subtropical in southern Florida.

In this chapter I apply an approach based on that of Traiser (2004) to the North American flora

in order to test the applicability of linear models for temperature estimation via leaf margin analysis

and provide a recalibration of the relationship between temperature and leaf margin percentage

based on spatial analysis at a continental scale.

5.2 Methods

As a source of data on tree floras, I used the online version of the Atlas of North American Trees

(Critchfield and Little 1966; Little Jr. 1971, 1976, 1977, 1978), which has been digitized as shapefiles

suitable for analysis using geographical information systems (GIS) software by Thompson et al.

(1999) and is available on the world wide web at (<http://pubs.usgs.gov/pp/p1650-a/>). In theory,

all native Canadian and US trees and large shrubs (defined as >3m tall in any part of their range)

are included in the Atlas. The maps are generally thought to be accurate to at least the county

level.

The range maps were compared with a 50 km grid covering North America. This grid size was

chosen to provide samples at a relatively fine geographic resolution, while minimizing the effects

of microclimatic variability, where a range of environments within a gridcell might confound the

analysis. A 50km cell exceeds the maximum distance over which leaves might be expected to be

transported before being deposited and preserved in the fossil record, and is roughly equivalent to

the implicit county-level accuracy of the original range maps. A larger grid-size would lose data

present in the original range maps; smaller would imply greater precision that is really available

from the originals.

Each of the 512 broadleaved dicots in the online Atlas as of 2006 was included. Monocots, conifers,

and leafless species (e.g. cacti) were excluded. Leaf margins were classified using Gleason and Cron-

quist (1963), Sargent (1905), Little Jr. et al. (1964, 1974), of North America Editorial Committee

(1993–), Britton and Brown (1913), and Hickman (1993), as well as web-based resources.

Species were classified as toothed (rather than lobed) if indentations in their leaves were present

and extended less than 0.25 of the distance from the outermost margin towards the mid-vein of the

leaf. Following the procedure of Wolfe (1993), species with only entire leaves were assigned a value

of 1, those with only toothed leaves were assigned a 0. Species in which presence or absence of teeth

is a variable trait were assigned a value of 0.5. A list of the categories assigned to each species and

whether its leaves are deciduous or evergreen can be found in appendix A.
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The score for each grid square was obtained by averaging the values obtained for all the species

whose ranges overlapped into that grid square. Note that this methods section refers to the final

collaborative analysis the results of which are presented here. The original GIS analysis done by the

author used 1/2 degree or about 60km grid cells and only about 250 species. See footnote at the

beginning of this chapter for full details of collaborators’ input.

5.3 Results

Summary maps and scatter plots (figures 5.1, 5.2) show that the percentage of entire margins reaches

its highest point in the south-eastern North America, and is generally high in the east, compared to

other parts of the continent. There is clear general latitudinal trend, complicated by differences in

high relief regions of the west. Grid cells with fewer than 20 codable species are not colored.

Figure 5.1 shows the points coded by mean annual temperature. Because of the very good

correlation between latitude and mean annual temperature, this is roughly equivalent to latitudinal

coloring, but note, for instance, the cold anomaly where the Appalachian mountain chain in eastern

North America is shown by green and light-blue ‘tongues’ pointing southwest, parallel to the east

coast.
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Figure 5.1: Summary map and scatterplot showing proportion of entire-margined species

in the North American native tree flora color coded by mean annual temperature. Black

line is lowess non-linear regression line.

Figure 5.2 shows the relationship between temperature and leaf margin percentages colored by

the proportion of entire leaves. With this coloring scheme, the effect of continentality is also visible:

the floras with the smallest proportions of entire leaves (colored orange) are not those with the very

91



coldest mean annual temperatures, but in the continental interior (southern Quebec and Ontario).

This suggests that at a given mean annual temperature, more equable continental areas (dryer, with

greater mean annual range of temperature) will have fewer entire leaves than coastal regions.
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Figure 5.2: Summary map and scatterplot showing proportion of entire-margined species

in the North American native tree flora color coded by the proportion of entire leaves.

Black line is lowess non-linear regression line.

Note that in both of these figures, there is a clear relationship between leaf margin percentage

and mean annual temperature for the forest region of the eastern half of the continent. If the eastern

coast is examined independently, the relationship between mean annual temperature and leaf margin

percentage becomes even ‘tighter’, though it remains clearly non-linear (figure 5.3).

Margin percentage changes relatively slowly with respect to temperature between 0 and 20◦C

with a wiggle to the right at around 10◦C, showing reduced continentality. The rate of change with

temperature then accelerates at around 20◦C, and keeps a more-or-less linear relationship up to

about 25◦C, at the geographical limit of southern Florida. These data show more scatter than is

evident in previous work on this subject in China (Wolfe 1979) and North America (Wilf 1997),

perhaps because more samples were included across a diverse range of soil types, elevations, and

microclimates.

Previously published studies for parts of North America and eastern Asia have suggested only a

linear relationship between temperature and leaf margin percentage (figure 5.4). The relationship

found here intersects with the linear relationships suggested by other studies at lower and higher

temperature values, but curves away from that line at intermediate values. Note that the data points

used by Wilf (1997) happen to fall only at those extreme values, and the line drawn between them is
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Figure 5.3: Proportion of entire leaf margins against temperature in the eastern North

American forest region demarcated above. Points color coded as in figure 5.2 by the

proportion of entire leaves. Black line is lowest non-linear regression line.

therefore an interpolation. The data analyzed here suggest that if intermediate temperature zones

were included, the true relationship would be arched. In retrospect, a close examination of Wolfe and

Spicer’s complete (173 flora) data set, including high-elevation floras, suggests the possible presence

of this non-linearity, which can now be documented in detail. In figure 5.4, I show a comparison

of the east-coast subset of the new synthetic data with six previous studies. In broad terms the

new data substantiate previous work, but the strongly non-linear relationship has not been observed

before.

On the western side of North America, areas between northern California and Alaska receiving

more than a meter of rain per year show only a weak correlation with temperature over a range of

some 25◦C (figure 5.5). The same is true if the coastal region in general is included, irrespective of

rainfall (figure 5.6). (Note that although the slope of the least squares regression lines are statistically

different from 0 in both cases, the spatial autocorrelation of the gridded data means that the p-value

of the regression cannot be trusted.) The poor correlation apparent from the plots in figures 5.5

and 5.6 is surprising because important early studies of the correlation between leaf margins and

temperature by Wolfe (1993) were heavily based on data from western North America.

Examinination of the relationship between percentage of broadleaf evergreen leaves and temper-

ature, geography, and percentage entire leaves (figure 5.7) reveals expected patterns: there are more

broadleaf evergreen species in low latitudes, high temperatures and where most of the leaves are en-

tire. Percentage of evergreen species does not, however, do as good a job at predicting temperature
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Figure 5.4: The results of the present study for eastern North America compared to

other previously published studies

as percentage entire margin species. Since it is usually impossible to determine whether a fossil leaf

was deciduous or not, from the point of view of paleoclimatic reconstruction the observation that

deciduousness is not a better temperature predictor than teeth is irrelevant. It is more interesting to

consider using percentage entire margins to predict deciduousness in the fossil record. This seems a

reasonable procedure, though subject to the relatively broad scatter in the plot of percent broadleaf

deciduous and percent entire in the lower left corner of figure 5.7.

Comparing the maps in figures 5.2 and 5.7, we can also see that while shading percentage entire

produces relatively horizontal colored bands, shading percentage broadleaf evergreen shows crescent-

shaped bands running north along both coasts of North America. This implies that coastal regions

are identifiable by a particularly high ratio of evergreen species to entire species, in other words, near

the coasts, there are more evergreen species than would be expected based on the number of entire

species. Since deciduousness may be related to cold winter temperatures and physiological drought,

this effect is not hard to explain by reference to the milder (more equable) and wetter climates near

large bodies of water.
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Figure 5.5: Scatterplot of margin proportion for areas in western North America with

>1 m annual rainfall.

5.4 Discussion

The results obtained in this study in some respects confirm previous findings on leaf margin analysis.

In other respects, however, they call for a reappraisal of earlier published conclusions on the nature

of the temperature relationship.

On one hand, the positive relationship between entire leaf margin percentage and temperature

is confirmed as being robust in the extensive forest area of eastern North America, between around

0 and 25◦C. Given the scatter of the data points, it would appear possible to designate temperature

to within about ±3 or 4◦C between about 0 and 20◦C. This is slightly less than previous studies

had suggested (accuracy to within ±2.5◦C), but still appears likely to give useful conclusions about

paleotemperatures, especially in combination with other sources of evidence. The scatter decreases

markedly at temperatures above 20◦C, at least in eastern North America. In the range 20–25◦C

precision seems to be within ±1◦C, though this apparent precision may partly be due to more
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Figure 5.6: Scatterplot for areas in western North America regardless of annual rainfall.

homogenous edaphic environments in the warmer parts of the continent.

This spatial analysis reveals limits in the accuracy of temperature estimates due to scatter and

non-linearity, which are not evident in smaller data sets. The arch away from the straight line

at intermediate temperatures may call for reassessment of some earlier paleotemperature estimates

from the fossil record that were based on leaf margin analysis. It is possible that the flattening

of the curve that also brings about the arch relates in some way to the swampy soil conditions

common in Florida and along the Gulf Coast. Burnham et al. (2001) and Kowalski and Dilcher

(2003) have noted that swampy environments tend to have different proportions of entire-margined

species than non-swampy environments. However, although swamps are widespread across southern

Florida, this is by no means the case throughout northern Florida, or in Texas where the mean

annual temperature is greater than 20◦C, above the inflection point of the curve. Hence, it seems

rather unlikely that swampy soils alone cause this trend.

For the western coast of North America, the lack of any strong correlation with temperature was
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Figure 5.7: Map of percentage of broadleaf evergreen species (where there are more than

20 species to a grid cell) and scatter plots showing the bivariate relationships among per-

centage broadleaf evergreen, percentage entire, mean annual temperature, and latitude.

unexpected. Although the topography of this area is variable, is is surprising that the lowland flora

failed to produce a detectable latitudinal trend. The first classic studies in leaf margin analysis by

Wolfe (1979, 1993) were also based on data from western North America, and indicated a strong

correlation between percentage entire leaf margins and temperature.

It is possible that the nature of the sampling in western North America by Wolfe (1993), on

local deciduous stands of particular physiognomy, identified a linear relationship which is not evident

when sampling is more thorough and regular. Wolfe pointed out that the lowland floodplain settings
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supporting forests in modern arid areas are just the sort of facies that preserve plant fossils. On

the other hand, the vagaries of taphonomy and preservation of fossil leaf floras surely require that

error analysis of the relationship between temperature and leaf margins use a wide range of forest

types. Thus, the results presented here may provide a more realistic interpretion of the variation

found in the fossil record. The lack of a broad scale effect in western North America may also be

partly due to filtering of the flora. Species extinctions during glacial phases may have left behind

fewer forms with entire margins (Adams and Faure 1997). In this sense, interpretation of Tertiary

fossil leaf floras from western North America might be more accurate if based on training data from

the eastern half of the continent, which is not so depleted.

Synthetic floras such as are produced here are different from species lists obtained from individual

sites as previous authors have done. Therefore diversities will be inflated by counting range-through

taxa, but there seems to be no reason why this should bias the proportion of leaves with entire

margins. If anything, the broad scale sampling used here should be expected to yield a more

accurate representation of true relationship between leaf form and temperature than sampling local

sites, which are subject to the vagaries of microclimatic variation. The smaller sample numbers

and rather more selective or ad hoc sampling used in previous studies may have disguised the true

non-linear relationship apparent in eastern North America. It is unclear whether the correlation in

eastern Asia would be the same if more data points from intermediate temperatures were added in.

If the non-linear functional relationship obtained here reflects the true relationship between

leaf margin percentage and temperature, what are the implications? Many of the estimations of

temperature from leaf margin percentage in fossil leaf floras may have to be altered, leading to

different paleoclimatic conclusions. It appears from the scatterplot of eastern North American data

in figure 5.3 that for mean annual temperatures between about 12 and 19◦C, the earlier calibrations

tended to underestimate temperatures by between 3 and 5◦C. However, for warmer climates above

about 20◦C, the earlier linear models seem to have overestimated temperature by 1 or 2◦C.

This study appears to confirm that leaf margin analysis can be useful in paleotemperature analysis

in some areas, such as eastern North America. The relationship, however, may be unreliable in

regions that are floristically depleted or have complex topography, such as the western half of the

continent. In regions where the relationship is strong, it should be used with caution, because of

non-linearity in the relationship and the evident scatter within the data. These findings emphasize

that interpretation of palaeotemperatures from fossil leaf floras is best done in combination with

other indicators (such as general floristics and a combination of other leaf characteristics).
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6 Leaf architectural patterns across lineages: An ecophenetic

examination of specimens in the the National Cleared Leaf

Collection

Previous chapters have been concerned with how leaf architectural characteristics are distributed

through time (chapter 2) and space (chapters 4 and 5). This chapter deals with their distribution

across taxonomic and phylogenetic space. I explore the hypotheses that leaf architectural characters,

insofar as they can be represented by Compendium Index Categories (CICs) as described in chapters

2 and 3, can be used to: (1) assist identification of unknown leaves to taxonomic groups and (2)

reveal phylogenetic relationships among taxa.

6.1 Introduction

In this chapter, I will distinguish between taxonomic groups (defined here as named sets to which leaf

specimens are assigned) and phylogenetic groups (defined here as monophyletic clades representing

explicit hypotheses about the historical relationships between the plants that produced the leaf

specimens). Note that it is perfectly possible (depending on how well or poorly taxonomic groups

reflect phylogenetic relationships) for leaf characters to allow perfect identification of an unknown

leaf to a taxonomic group while containing no phylogenetic signal and being useless for the purpose

of revealing phylogenetic relationships. Hence, it is necessary to examine two related hypotheses

reflecting taxonomic and phylogenetic attribution. Leaf identification to taxonomic groups does not

depend on phylogenetic reconstruction of plant relationships so it is possible for hypothesis (1) to be

accepted while (2) is rejected (the numbers 1 and 2 referring to the hypotheses given in the preceding

paragraph). It is not logically possible, however to accept hypothesis (2) without also accepting (1).

In other words, classification is necessary (but not sufficient) for phylogenetic reconstruction, while

phylogenetic reconstruction is not necessary for classification. If (2) can be demonstrated, however,

it is sufficient also to show (1).

The data to be examined comes from the Yale Peabody Museum holding of the National Cleared

Leaf Collection (NCLC), which consists of about 6767 accessioned leaf specimens cleared, stained,

and mounted between glass slides for easy examination by transmission light microscopy. Cleared

leaves housed in the National Museum of Natural History at the Smithsonian Institution were not

examined.
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6.2 Data

Using the Manual of Leaf Architecture (Ash et al. 1999) and Green and Hickey (2005), each specimen

in the NCLC was assigned from one to four CICs. All data were entered into the museum collections

database, and this chapter is based on an examination of a version of the database exported on

August 21, 2006, which can be found in appendix A.

The museum database was read into R (R Development Core Team 2005) and laundered using

a script file, which can be found in appendix B. The data are recorded as specimens, and genus,

species, and family are given for each entry in the museum database. As given, these are taxonomic

categories that imperfectly reflect phylogenetic relationships. The families are from Cronquist (1981)

with some additions and emendations from Takhtajan (1997). There are 306 families with at least

one specimen that can be attributed to a single CIC.

Specimens that were too imperfectly preserved or ambiguous to be referred to a single CIC were

removed from consideration. As further examination may show, it is possible that this cropping of

the data may influence the conclusions, because variation is not distributed homogeneously across

specimens. Therefore in order to compare families with complete statistical rigor, a different, hier-

archically nested, stratified sampling program would be needed. Given the constraints of this data

set, however, it is clearly not possible to examine variation at all hierarchical levels, so I have chosen

to look at three levels in this initial analysis: specimen, family, and order. At the ordinal level,

two alternative phylogenetic schemes (ways of assigning families to orders) are available, one from

Cronquist (1981), the other from the Angiosperm Phylogeny Group (Stevens 2001–; Angiosperm

Phylogeny Group 2003). The 6767 specimens in the database represent 3732 species and 1733

genera so a reevaluation of each attribution would be too time-consuming for the present study.

Instead, I rely on the attributions to family as given and assume that species and genus sampling

within family have not skewed results. Only superfamilial relationships are examined critically.

Family level is a particularly interesting level at which to look at variation because it has tra-

ditionally been where a relatively large proportion of angiosperm variation has been expressed. In

other words, family-level groups have been more stable, less controversial, and more natural-seeming

than groups at other levels of the hierarchy.

In order to discuss the distribution of leaf architectural characters across families, I will define

the following terms: The family mode is the most commonly found CIC among specimens attributed

to the family. Where there is a tie, the family is considered to have more than one mode. The family

spread is the total number of CICs represented by all specimens attributed to the family. The family

max is the number of specimens in the modal CIC.

If a good correspondence is found between CICs and families, i.e. if all the specimens in a family
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have leaves that fall into the same CIC, and if this CIC is different for each family, then it is easy to

attribute an unknown leaf to a family. On the other hand if all the families have a wide spread of

leaves across CICs or if the modal CICs in different families are the same, then it becomes difficult

to identify unknown leaves to family.

Figure 6.1 is a bar plot showing the distribution of the spread for all 306 families represented in

the data.
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Figure 6.1: Bar plot showing how many CICs are represented by the leaves in each family

in the NCLC. The heavy right skew of the distribution is at least partially an artifact of

taxon sampling; i.e. it is not corrected (or rarified) by examining the same number of

specimens from each family.

Figure 6.2 shows how the shape of the distribution in figure 6.1 is skewed by sampling. While

figure 6.1 is heavily right-skewed, the rarified distributions in figure 6.2 (to sample sizes respectively

of 10, 20, 30 and 40 specimens) show how most families have a spread across about 10 CICs.

Assuming that the specimens are randomly chosen from within each family, at least 20 specimens

are needed in order to estimate a family’s spread.

A table of the modes, spreads, maxes and total number of specimens for each family can be

found in the appendix A, as can other tabular summaries of the data used below.
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Figure 6.2: Bar plots showing how rarefaction affects apparent family spread
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6.3 Results

To illustrate these data in more detail, I have chosen to focus on two families: Rosaceae and Ror-

idulaceae. Rosaceae is the family with the largest number of specimens in the data examined, while

Roridulaceae (next to Rosaceae in alphabetic order) is represented by only a single specimen. Figure

6.3 shows the distribution of specimens across CICs in these two families as ‘spectra’ or ‘profiles’

(cf. figure 4.6). The bar plots are not analogous to the summaries in the previous section, but show

instead the actual frequency of specimens in each CIC for the two families.
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Figure 6.3: Profiles or spectra of CICs for two families.

Roridulaceae has a spread of 1, a mode at CIC104, a max of 1 and a total of 1 specimen. In

contrast, Rosaceae has a spread of 30, a mode at CIC109, a max of 59 and a total of 313 specimens.

Therefore both Rosaceae and Roridulaceae appear in figure 6.1 (Roridulaceae at the left end of the

distribution as one of the 109 families with a spread of 1; Rosaceae near the right end as the single

family with a spread of 30, the third-broadest spread). Roridulaceae does not appear in figure 6.2,

however, because it is only represented by a single specimen so it is impossible to say from the

available data very much about what its family spread would be if more specimens were examined.

Rosaceae must appear in all four distributions in figure 6.2 because it has 313 specimens, but it

is not clear where exactly it is in each distribution since a random selection of a subset of its 313
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specimens was made to determine its rarified spread.

The data summaries in the previous section and the figure 6.3, while giving an idea of the likely

accuracy of identifications to family of an unknown leaf do not provide enough information actually

to assist such an identification. For instance, given an unknown leaf in CIC104, one would need to

examine all 306 family profiles in order to see where the leaf might probably fall. This is a difficult

graphical challenge to meet, but there is a better way of representing the same data, which somewhat

simplifies the task.

For instance, in figure 6.4 the same data are shown as scatter plots in which the CICs on the

x-axis are unchanged, but each point on the y-axis relates to a particular specimen, rather than (as

in figure 6.3) showing the frequency of counts in each CIC.
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Figure 6.4: Scatter plots for two families showing the same data as figure 6.3 in an

alternative representation.

In principle this strategy provides a way of representing all 6767 specimens on a single plot as

shown in figure 6.5. Unfortunately, at reasonable resolutions it is difficult to identify a particular

CIC in any of these little scatter plots, so the general picture is all that can be obtained. This general

picture substantiates some of the claims made in the previous section based on data summaries: that

most of the families have only a few specimens and that families with enough specimens to get an

idea of the spread include leaves spread out over about 10 CICs.

104



See Plate 2

Figure 6.5: Scatter plots as in figure 6.4 for all 306 families in the NCLC.
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How can this information help us to identify an unknown leaf? One route is to lump data together

into a smaller number of groups than the 306 families; e.g. into Linnean orders. The defect of this

is that interfamilial relationships (the composition of orders and subclasses) has historically been

much less stable than the constitution of families. Many families, like the Graminae and Compositae,

have been accepted taxonomic and phylogenetic groups since the 18th century, while superfamilial

groups like the Hamamelidae and Dilleniidae, which were considered phylogenetically meaningful

as recently as the 1980s (Cronquist 1981) have now been broken up and their parts redistributed

into other groups. In order to try to allow for this instability in the constitution of superfamilial

taxa, I have used both a recent system based largely on genetic data (Stevens 2001–; Angiosperm

Phylogeny Group 2003) and an older system from Cronquist (1981).

In each case, I lumped together data from all the specimens in each family in the order and

produced order profiles like the family profiles shown in figures 6.4 and 6.5. Instead of plotting them

as bar plots (figure 6.4) or scatter plots (figure 6.5), however, I employed grayscales intermediate

between black and white to indicate whether a particular CIC was densely occupied in a particular

order. This matrix of orders by CIC weights can be seen as a grey-scaled image in figure 6.6 with

(in addition) the orders clustered using a complete linkage hierarchical clustering algorithm with

euclidean distance metric (for details see Everitt 1974; Hartigan 1975; Kaufman and Rousseeuw

1990; Gordon 1999) and the manual page for hclust() in R Development Core Team (2005). Before

clustering, the data were also scaled using the Hellinger distances (between rows) (Oksanen 1983;

Legendre and Gallagher 2001).

Note that the dendrogram on the left of the shaded spectra, which suggests ‘relationships’ between

the orders does not reflect the phylogenetic hypothesis in Stevens (2001–). This is not unexpected:

the data being examined are occupation of leaf architectural classes—an imperfect measure even of

leaf architecture, much less of phylogenetic or historical relationships between plant lineages. The

clustering structure here shows which orders have similar leaves (based on the available data), not

how the orders are related. We expect to find cases where orders that are related do have similar

leaves, but this systematic component to the leaf architectural signal is obscured by ecological

influences or environmental plasticity, which may be much more influential.

Note that the lack of corresponedence between leaf architectural clusters and phylogenetic or

systematic relationships is not limited to a particular system. Figure 6.6 shows equally poor corre-

spondence to the super ordinal groupings postulated by Cronquist (1981).

At the scale of family, the same pattern can be observed, both in the case of the families attributed

to order Rosales by APG (see figure 6.8) and in the case of Cronquist’s system (figure 6.9).

In neither case are the relationships between families within the order Rosales well estimated
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Figure 6.6: A shaded image showing CIC weights for the orders recognized by Stevens

(2001–). Orders have been hierarchically clustered and reordered by a complete-linkage

clustering algorithm using the euclidean distance measure for Hellinger-scaled CIC data.

by the leaf architectural groupings. This result effectively allows us to reject hypothesis (2) from

the introduction. The data from leaf architecture that we have considered in this study does not

by itself allow effective phylogenetic reconstruction of dicot relationships. This result should not be

taken to suggest that leaf characters should be rejected from phylogenetic analyses. As can be seen

from certain subsets of the data like the correct sister-relationship of Roridulaceae and Neuradaceae

in figure 6.9, there clearly is a phylogenetic signal present. It is, however, confounded by other

(probably environmental) signals such that (at the scale of orders within families or families within

order Rosales) it is not strong enough to produce an accurate estimate of phylogenetic relationships.

107



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

15
4

15
5

16
0

16
1

16
2

16
3

16
4

Compendium Index Category

Callitrichales
Papaverales
Leitneriaceae
Fabales
Raffelsiales
Orchidales
Zingiberales
Filicales
Haloragidales
Najadales
Liliales
Nymphaeales
Asterales
Proteales
Coniferales
Cyperales
Trochodendrales
Saxifragales
Myricales
Eucommiales
Juglandales
Salicales
Urticales
Rhamnales
Malvales
Violales
Rosales
Campanulales
Lamiales
Piperales
Solanales
Geraniales
Euphorbiales
Hamamelidales
Apiales
Ranunculales
Primulales
Capparidales
Daphniphyllales
Gnetales
Illiciales
Cornales
Laurales
Didymelales
Polygonales
Rubiales
Gentianales
Polygalales
Magnoliales
Ebenales
Santalales
Lecythidales
Linales
Ericales
Rhizophorales
Caryophyllales
Sapindales
Scrophulariales
Myrtales
Dilleniales
Celastrales
Theales
Fagales
Dipsicales

Cronquist Orders, Hellinger Scaled

Figure 6.7: A shaded image showing CIC weights for the orders recognized by Cronquist

(1981). Other than the choice of different ordinal assignations for the families in the

NCLC, this shows the same data as are displayed in figure 6.6.

6.4 Discussion

So if ecophenetic data based on CICs cannot recover phylogenetic groups, what are they useful

for? Given the task discussed in the previous section of identifying to taxon a leaf of unknown

attribution in, for instance, CIC104, figures 6.6–6.9 take on a different meaning: the column of grey

blocks above CIC104 becomes a representation of the probability of finding the leaf in each of the

taxonomic groups. Where there are dark blocks, there is a high probability of finding similar leaves;

where the area is light, there is a low probability of finding similar leaves. For instance, imagine

a hypothetical scenario in which all leaves can be red or green (the color carrying no functional

advantage or disadvantage). Purely by chance, some families and orders will have more red leaves
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Figure 6.8: An examination of the families included in Rosales according to Stevens (2001–)

and some more green leaves, so if you want to identify a red leaf, it makes sense to look first in

groups (orders and families) that have mostly red leaves. This is true unless red and green leaves

are distributed uniformly across groups, which as can be seen from the figures is not the case.

For instance, to identify the leaf to a Cronquist order, reading along the column of shaded

blocks above CIC104 reveals 21 possibilities, which are listed here beginning with the most likely:

Papaverales, Myricales, Solanales, Fagales, Geraniales, Apiales, Liliales, Dipsicales, Urticales, Eu-

phorbiales, Myrtales, Dilleniales, Juglandales, Ranunculales, Rosales, Scrophulariales, Polygalales,

Hamamelidales, Sapindales, Violales, Theales.

Papaverales, having only 4 families (only one of which, Papaveraceae, has any leaves in CIC104),

is boring to examine in more detail. The breakdown into families of Rosales, however, which is also

reasobably high on the list of possibilities, is shown in figure 6.9. There the unknown leaf in CIC104

(provided it does belong in Rosales) is attributed to Roridulaceae or Neuradulacea or possibly to

Pittosporaceae, but not to any of the other families.
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Figure 6.9: An examination of the families included in Rosales according to Cronquist (1981)

The same procedure can be used to identify an unknown leaf to APG taxonomic groups. The

point is that taxonomic identification can be improved even if the contribution of phylogenetic his-

tory makes little or no contribution to the distribution of characters across groups. If the taxonomic

groups used for identification match phylogenetic relationships perfectly, then taxonomic identifica-

tion will also serve as phylogenetic analysis, but in order to demonstrate hypothesis (1) above, it is

only necessary to show how leaf architectural data can be used to help assign leaves to well-defined

morphological groups, not to demonstrate that these groups are also phylogenetically significant.

Another feature of the plots is the inclusion of orders (e.g. Gnetales in figure 6.7) that are

not angiosperms and therefore cannot properly be classified using the CICs 100–164. As discussed

in chapter 4, there are CICs, which are not examined here, intended to describe non-angiosperms.

Also it should be pointed out that CICs 160–164 designate poorly-preserved specimens and therefore

should not be relied upon for the purposes of classification or identification.

A final point to be noted is that the images shown in figures 6.6–6.9 can be considered probabilistic
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tabular polyclave keys. That is, they are similar to diagnostic keys laid out in a tabular format in

which entry can be made from any character (as opposed to dichotomous keys, in which the order in

which characters are examined is fixed), and in addition to showing the possibility of identification,

they also provide a measure of how probable each possibility is.

6.5 Conclusions

From this data examination, we can conclude that leaf architectural data does provide a helpful tool

for taxonomic identification. Although an unknown leaf will seldom be unambiguously attributable

to a single family or order based on CICs alone, data summaries like figures 6.6–6.9 allow large

numbers of families or orders to be ruled out in the process of identification. Moreover, subject to the

constraints of sampling, these figures allow higher taxonomic groups to be ranked in order of which

are most likely to contain a given leaf form (i.e. in which group are the greatest proportion of leaves

of the given form found). It is not immediately clear, however, that this taxonomic identification

contains a large amount of useful phylogenetic information. That is we can accept the first hypothesis

but have only weak evidence supporting the second.
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7 Classification based on structured factors

A problem that often appears in the social and natural sciences is the problem of clustering a set of

objects based on a number of observed variables. This issue has been divided into so-called q-mode

analysis (clustering the objects) and r-mode analysis (clustering the variables) and these modes of

analysis can also be combined into ‘two-way’ clustering in which both variables and objects are

clustered either independently or each by reference to the structure obtained for the other direction

(Legendre and Legendre 1983). What characterizes all three of these methods is no assumption of

a priori structure or weighting of objects or variables. The intent is to determine impartially if and

where ‘natural’ or ‘real’ breaks appear in the data. There are many issues surrounding the definition

of what a ‘real’ break may be, how clustering is affected by missing values and data pre-treatment,

and what distance metric or clustering method should be used. We cannot discuss these issues here.

Instead, this paper addresses a particular scenario in which we know more about the variables than

about the objects. That is, we either have no prior classification of the objects or do not want

our prior classification to affect our results, but we do know, and would like our clustering to be

informed by, the way the variables are structured (which is frequently hierarchically). Note that

this is more often the case than it might seem: there are very few cases in which we have absolutely

no preconceived notions of interactions or covariation among a set of measured variables. The mere

choice of certain variables implies some degree of classification, so to treat the variables chosen as if

they are unstructured is usually to ignore important prior constraints on the data.

In many statistical packages and in particular in my analytic tool, the open-source programming

language R (R Development Core Team 2005), it is conventional to represent objects as rows and

variables as columns, so I will use ‘row’ synonymously with ‘object’ and ‘column’ with ‘variable’.

Specifically, therefore, we would like to to split up a matrix into strata or blocks, perhaps hierar-

chically structured, in a way that reveals potentially unexpected breaks in the rows, while adhering

insofar as is reasonable to the known structure of the columns. Of course the distinction between

‘objects’ and ‘variables’ or ‘rows’ and ‘columns’ is entirely for the sake of convenience and clarity,

because we have two sets of random variables that we would like to treat differently. Formally they

are both random variables taking measured values from a sample space and there is no necessary

correspondence between things that we think of as objects or variables in the physical world and the

rows or columns to which these things are assigned for analysis. In practice, because of the asym-

metry of the procedure outlined below, the random variable about which more prior knowledge is

available should be assigned to the columns. In the case considered here, the values are all counts or

count-equivalents (and the simulated data are therefore drawn from Poisson distributions), though

with some variation, the same general procedure should also be applicable to continuous variables.
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In this chapter I will use the following notation: a matrix or contingency table, M , takes values

xij for i in n rows and j in m columns; the row marginal sums are xi.; the column marginal sums

are xj., and the sum of all counts is x... I am designing a procedure to determine where and when

to partition this matrix; some desirable properties of this procedure are:

(1) The overall number of observations of each object or variable (the marginals, xi., and x.j)

should not unduly affect the clustering. This suggests using a metric in which the proportional

rather than the absolute counts are used.

(2) The variables should not be treated as equivalent. It is the actual proportional counts in each

variable, not the distribution of counts that is important, i.e. two rows with identical distributions

of counts may be very dissimilar if the high counts and the low counts are in different columns.

(3) There should be a stopping rule that prevents the continued partitioning of blocks when there

is no evidence that they have meaningful internal structure. We need, however, to be able to tune

this stopping rule in order to allow the partitioning to proceed to a greater or lesser extent.

(4) There should be a graphical method of concisely displaying some combination of the raw

data, its a priori-known structure, and the clusters that are derived from the procedure.

(5) Since we wish to ignore any a priori information we may have about the classification of the

rows, we should reshuffle them as necessary in order to make better partitions in the matrix. In a

case where the column structure is known, on the other hand, the column order must remain fixed.

In order to determine what partitions are ‘better’ a test statistic is needed to compare the

actual counts xij with an alternative of multinomial independence. Because there are likely to be

a number of empty cells, a chi-squared test may give unreliable results and a permutation test is

computationally more expensive than a maximum likelihood approach. Therefore we use a likelihood

ratio test to compare:

H0 : X is distributed in proportion to the independent row and column marginals: each row has

the same conditional distribution pij = pi.p.j with likelihood:

L(xij |θ̂0) =
x..!(

xi.x.j

x2
..

)xij∏
ij xij

(1)

with:

HA : X ∼ Multinomial(x.., pij), i.e. x.. samples independently drawn with replacement from

population X with positive probabilities pij summing to 1, and likelihood:

L(xij |θ̂) =
x..!

x1!....xk!
p1

x1 · · · pk
xk =

x!∏
xij !

∏
ij

pij
xij (2)

This gives a likelihood ratio test statistic,
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λ = 2log
L(θ̂)

L(θ̂0)
= 2log

∏
ij pij

xij∏
ij(pi.p.j)xij

(3)

Taking logs and simplifying, we get a proportional log likelihood,

pll =
∑
ij

xij(log
xij

x..
− log

xi.

x..
− log

x.j

x..
) (4)

Like the chi-squared test statistic, this will be be 0 if all the rows (or columns) have proportionally

identical counts and its distribution will be asymptotically chi-squared on (n− 1)(m− 1) degrees of

freedom as x.. →∞, provided xi. > 0, x.j > 0

7.1 Algorithms

Echoing approaches found in Hartigan (1975), code has been written to do two separate things with

the contingency table, M.

First of all, the function part() partitions or clusters the rows of M in such a way as to minimize

the test statistic, pll. The algorithm picks a random starting assignment of the rows to two clusters

and then tries each row in turn in each cluster, moving rows about whenever a smaller value of the

test statistic is discovered. When the test statistic stops changing (by more than a small, settable

tolerance ε) or when a maximum number of cycles through all the rows and clusters (defaulting to 5

complete cycles), the algorithm adds in an additional cluster and continues to optimize. The process

ends when all of the clusters could have occurred by chance at the assigned significance level or when

there are n − 1 clusters. Though by default there is only a single initial randomization, a greater

number of random starts can be chosen, so as to avoid being caught in a local minimum. Options

are provided for several levels of verbose output, and for the production of plots in which the rows

are reordered and colored appropriately to reflect the clustering that has been produced. Although

the details differ, the intent of this function is similar to the ‘one-way direct splitting’ algorithm

described by Hartigan (1975).

This optimization uses all the variables (which are implicitly weighted equally) and only partitions

the input matrix horizontally, so the function part.recursive() provides a wrapper that first

partitions its input matrix horizontally, but then, when all the remaining blocks could have occurred

by chance, looks at subgroups of variables given by any known structure in the columns to see if

there are sensible subsets of columns that will partition blocks of rows that could not be partitioned

using all of the columns. The graphic output of part.recursive() is a series of nested sub-matrices

together supplying the complete, hierarchical partition of the rows of the original matrix, M.
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The second main function is provided by mondrian(), which takes a given row and column

structure and compares the available vertical and horizontal partitions of M (based on the structures

of the rows and columns), in each case making the split that is more likely. It uses the same stopping

rule (remaining blocks could have occurred by chance at a given significance level), but behaves

symmetrically with respect to rows and columns. That is, it splits either horizontally or vertically,

starting with the deepest nodes in the given structures of the rows and columns, and continues to

split until all the nodes have been tried or the stopping rule is met. This is analogous to ‘two-way

direct splitting’ Hartigan (1975). Note also that for convenience (because the results of part() have

been found to agree well with hierarchical clusters), mondrian() assigns a tree structure to either

of the variables (rows or columns) that are not assigned a prior structure in the function call.

The graphical output of mondrian() consists of a plot of the matrix partitioned by lines of varying

thickness, which show the hierarchical levels at which the partitions were made (figure 7.3) producing

an overall effect reminiscent of the later modernist paintings of Piet Mondrian (1872–1944).

The functionality supplied by part.recursive() and mondrian() are meant to be applied

in sequence: part.recursive() supplies a posterior structure for the rows of an imput matrix,

which can then be compared with the prior column structure via mondrian(). Note, however, that

mondrian() is algorithmically symmetric so it can also be used to compare rows and columns both

of whose structures are known a priori. Note that this sequencing is not yet available; the output

of part.recursive() is not in the correct form to be passed to mondrian(), a defect that is in the

process of being corrected.

Subsidiary helper functions used by all of these are pll.calc(), which calculates the test statis-

tic for a matrix, null.check(), which compares this test statistic with a chi-squared probability,

and two functions (sort.rows() and merge2matrix()) that are needed to translate between par-

enthetical tree format (e.g. ((A,B),C)), binary tree format (e.g.

A B C

root 1 1 1

node1 1 1 0

terminal1 1 0 0

terminal2 0 1 0

terminal3 0 0 1

), and merge objects (e.g. for jA = 1, jB = 2, jC = 3),

i = 1 −1 −2

i = 2 1 −3
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the form in which hierarchical trees are stored in R. (For a more detailed descriptions of this form,

see the man page for hclust() in (R Development Core Team 2005). In general, a binary tree

format representation of n terminals will have a maximum of 2n − 1 rows and will have exactly

2n− 1 rows if and only if it is strictly dichotomously branching.

These functions are provided in appendix B and can be read directly into R using source().

They should run directly in R 2.0.1 under Mac 0S 10.2; the only know alternation that is necessary

to run them on other platforms is replacing the graphics driver quartz() with an appropriate non-

Macintosh-specific driver. Unfortunately at this stage documentation consists only of comments in

the source code.

7.2 Simulation

Before these functions are applied to actual data, their operation is best explained by applying them

to a small simulated matrix. Consider a simple 8×12 contingency table in which the counts in the

first 5 rows are randomly drawn from a Poisson(10), the left half of the bottom 7 rows are drawn

from a Poisson(20) and the right half of the bottom 7 rows are drawn from a Poisson(5).

a b c d e f g h

A 5 10 5 8 12 4 20 13

B 8 12 10 11 17 4 13 14

C 4 8 9 11 9 10 5 12

D 10 6 4 9 5 12 12 13

E 8 10 9 13 15 10 11 7

F 18 24 15 14 10 12 3 7

G 27 24 20 19 7 3 4 4

H 14 18 19 22 2 9 5 1

I 20 19 18 30 8 6 2 7

J 27 16 17 16 3 9 2 2

K 16 14 18 23 7 6 4 9

L 23 25 18 17 5 6 6 5

The function part() reliably divides this matrix into two strata as shown by the colors in figure

7.1.

Note that the clusters produced by part() are not dissimilar to those produced by a hierarchical

algorithm using complete linkage and a euclidean distance measure, as shown in figure 7.2. Though

in the case of the part() output, the default significance level of 0.05, allows retention of unresolved
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Figure 7.1: A partition of M into strata or clusters of rows based on the part() function.

polychotomies when there is insufficient evidence to partition clusters further, while the hierarchical

algorithm provides clusters even when they are not statistically supportable.

Application of mondrian() to the same matrix (also with a default significance level of 0.05)

produces the partition shown in figure 7.3. In this case, the tree structures associated with both

rows and columns are produced automatically (using a complete linkage algorithm). The resulting

row tree is shown to the left of the main matrix and the column tree is depicted above the main

matrix as batteries of (respectively) vertical and horizontal lines. The matrix of counts is divided by

lines whose relative thickness corresponds to how deep the split appears in its respective marginal

tree structure. Thus, the first split that is made, between the 5th and 6th rows of the original

matrix, is tried first because it is closest to the root of the a priori dendritic structure of the rows,

for which reason it also receives the heaviest line weight.

To see how the algorithm can be tuned, we can experiment with both lower and higher (figure 7.4)

significance levels. As is apparent from the figures, the degree of resolution (how far the partioning

proceeds) can be set by the adjusting the level of probability at which a block is considered to have

no meaningful internal structure.

If the significance level is set to 1, of course, partitioning can proceed until no block has more

than a single row or column, as is shown in figure 7.5
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Figure 7.2: Complete linkage euclidean hierarchical clustering of the rows of M.

This output on an artificial matrix gives us some confidence that the algorithm is producing

sensible results; in the following section we see how it responds to real data.
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Figure 7.3: Mondrianesque partition of M at the (default) significance level of 0.05.

119



101010M

10

fffM

f

555M

5

gggM

g

999M

9

eeeM

e

121212M

12

hhhM

h

111111M

11

dddM

d

444M

4

aaaM

a

888M

8

bbbM

b

999M

9

cccM

c

CMCM

C

121212M

12

121212M

12

555M

5

131313M

13

999M

9

101010M

10

666M

6

444M

4

DMDM

D

444M

4

202020M

20

121212M

12

131313M

13

888M

8

555M

5

101010M

10

555M

5

AMAM

A

444M

4

131313M

13

171717M

17

141414M

14

111111M

11

888M

8

121212M

12

101010M

10

BMBM

B

101010M

10

111111M

11

151515M

15

777M

7

131313M

13

888M

8

101010M

10

999M

9

EMEM

E

999M

9

555M

5

222M

2

111M

1

222222M

22

141414M

14

181818M

18

191919M

19

HMHM

H

666M

6

222M

2

888M

8

777M

7

303030M

30

202020M

20

191919M

19

181818M

18

IMIM

I

666M

6

444M

4

777M

7

999M

9

232323M

23

161616M

16

141414M

14

181818M

18

KMKM

K

121212M

12

333M

3

101010M

10

777M

7

141414M

14

181818M

18

242424M

24

151515M

15

FMFM

F

999M

9

222M

2

333M

3

222M

2

161616M

16

272727M

27

161616M

16

171717M

17

JMJM

J

333M

3

444M

4

777M

7

444M

4

191919M

19

272727M

27

242424M

24

202020M

20

GMGM

G

666M

6

666M

6

555M

5

555M

5

171717M

17

232323M

23

252525M

25

181818M

18

LMLM

L

Figure 7.4: Mondrianesque partion of M at a significance level of 0.9.
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Figure 7.5: Mondrianesque partion of M at a significance level of 1; that is, fully resolved.
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7.3 Data

A brief historical digression is necessary to provide a context for the type of data for which this

analytical procedure is designed. The historical roots of ecology lie in what was at the time called

botany but is now referred to as plant geography, phytogeography or phytosociology (McIntosh 1985).

Basically, pre-twentieth century plant geographers or ecologists were interested in categorizing and

explaining why different areas produced what seemed to be definite, predictable types of vegetation.

Until the mid–late nineteenth century , most plant geography was descriptive and anecdotal (e.g. von

Humboldt 1807; de Candolle 1855), and this general type of work has continued through the present,

especially outside of mainstream Anglo-American plant ecology (Zohary 1973; Takhtajan 1986). As

ecology constituted itself as a quantitative science, however, it became increasingly important to

justify vegetation classification with an explicit methodology. Among many schools of vegetation

classification that flourished around the end of the 19th through the first half of the 20th centuries,

the best known is the Montpellier (or Zurich-Montpellier) School and the most characteristic version

of its method was developed by the Swiss botanist Braun-Blanquet (1965). For extensive comparison

of the different schools of vegetation classification, see Whittaker (1962), and Shimwell (1971).

The Braun-Blanquet method of vegetation classification seems very antiquated and subjective by

the standards of modern anglophone plant ecology, but retains a data-centered and visual basis that

is worth preserving. It is essentially an ordination procedure intended to operate on a sites-by-species

matrix. The columns of the matrix represent a number of sites or localities (technically referred to

as stands, aufnahme, or relevés), and the rows represent the species found at the sites. The Braun-

Blanquet procedure consists of recording a list of species for each stand often with associated cover

or abundance estimates, usually ranked on a 1 to 5 scale, but sometimes recording only presence or

absence of species. The initial raw data is then recorded as in figure 7.6.

The species (rows) and sites (columns) are then reordered so as to produce blocks in the matrix

of numbers that are uniformly high (or at least non-zero). This procedure seems always to have

been subjective and based on trial-and-error. The species (rows) are constrained by prior knowledge

about the (genetic) relationships among species as well as known patterns of ecology and life-form,

while the sites (columns) were, at least in theory, supposed to be objectively classified by the patterns

emerging from co-occurrence of groups of species. The final classification of sites (shown in figure

7.7) would then be represented by the re-ordered matrix, with formal names applied to the blocks

of sites that had emerged from the analysis as characterized by the associated blocks of species.

The partioning procedure described in the previous sections represents an attempt to general-

ize and systematize a methodology similar to the Braun-Blanquet method, but more statistically

justifiable and applicable to a broader group of scientific and statistical questions. To explore the
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Figure 7.6: The rough, starting matrix of a Braun-Blanquet vegetation classification.

Each entry in the matrix consists of a pair of numbers, of which the first is the abundance

(percentage cover) and the second the sociability (clumping), both on a scale of 1 to 5.

This example is from Shimwell (1971).
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Figure 7.7: The resulting Braun-Blanquet vegetation classification. This partitioning is

obtained by reordering the rows and columns of the matrix in figure 7.6 by trial and

error until blocks of values are discovered. Note that this example is conceptually the

transpose of my procedure: more prior information is available about the rows and the

new classification sought is of the columns.
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effectiveness of this methodology when applied to actual questions of vegetation classification, we

have collected two different sets of variables for encoding the morphological or architectural infor-

mation in the leaves found at particular sites (these are referred to as floras instead of stands for

contingent historical reasons).

The first set of data is based on a 31-variable method of coding leaves designed by Wolfe (1993).

Strictly, the data that have been published are already percentages (of leaves having a particular

characteristic) rather than true counts. The practice—strongly to be deprecated—has been not

to publish the raw data but only this proportional digest. Nevertheless, sample size is constant

enough that we can treat these percentages as if they were counts. We have an updated version of

Wolfe’s data, which was available for download as of April, 2005 at <http://www.open.ac.uk/earth-

research/spicer/CLAMP/MET3AR.xls> (the data file Wolfe173.asc), a subset of this data set

(Yakusugi.asc), and three other data sets published independently but using the same variables:

Jacobs.asc (Jacobs 1999, 2002), Kowalski.asc (Kowalski 2002), and Gregory.asc (Gregory-Wodzicki

2000). Note that Jacobs.asc uses an earlier form of the data missing two variables.

The second set of variables is made up of 56 categories for which true counts are available. An

as-yet unpublished matrix of counts is to be found in Green.asc and the particular subset of this

data that we will examine here is given as Hawaii.asc (Green and Hickey 2004).

The a priori structures of these two sets of variables are stored as CLAMP.struct.asc and

CIC.struct.asc respectively.

Calling mondrian() on the Hawaii.asc data with the appropriate column structure, CIC.struct.asc,

produces figure 7.8. The only case in which a vertical split was made in preference to the horizontal

splits occurs in a position that had already been identified in exploratory analysis as showing an

important distinction: the compound leaves in the first three variables are known to be characteristic

of the understory foliage of the bottom four floras.

7.4 Remaining Issues

First of all, the code attached in appendix B is poorly documented and does not interact smoothly;

part(), which was written first, is unnecessarily slow and produces output that cannot be directly

passed to mondrian() as a prior constraint.

Second, statistically the entries in the cells of the contingency table M have been treated like

counts. In the CIC data (like the Hawaii.asc data set), they are in fact counts, but frequently

they are so low and include so many zeros that they seldom or never produce statistically significant

partitions. (For illustrative purposes, the counts shown in figure 7.8 were inflated so that statistically

significant partitions would be made. In fact, the raw Hawaii.asc matrix is rejected by the algorithm
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Figure 7.8: Mondrianesque partition of morphologically binned leaf counts from three

forest types on four Hawaiian islands.
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as having no significant structure at any reasonable significance level.

Also, the partitions made in the simulated data set are somewhat counter-intuitive. The split

between the top 5 rows and bottom seven rows was made correctly, but then continued splitting

failed to show any break in the bottom half (which was in fact made up of two distinct sections)

but partitioned the top half more fully. Though this seems counter-intuitive, it is the the relative

proportions of the counts that are being seen by the test statistic, so if there is a cluster of rows with

real proportional similarity (as is the case when it is really made up from two different distributions,

it is correct to refuse to partition it further.

Finally, there are three things that affect the degree of splitting: first is the actual total number

of counts, second is the significance at which to compare pll with a chi-squared tail probability by

the null.check() subroutine, and third is the type of correction used to penalize the test statistics

when comparing row and column splits. The default coefficient of 1 is associated with an AIC-like

penalty, but a larger penalty (e.g. 2 for BIC-like behavior) will affect the propensity for splitting

long, thin blocks along their short axis or their long axis. The interactions between these three

effects (overall number of counts, degree of splitting desired, and penalty for degrees of freedom) are

not understood in detail.

7.5 Discussion

As is apparent from the variety of clustering methods found in the literature, there are a vast number

of variant procedures that can be followed in partitioning a matrix. The choices that have been made

here are so specific that the functions that have been described are only applicable to data of a very

restricted type. In fact, this type is so restricted that the real data for which the procedures were

designed may not meet the theoretical criteria for it to work properly. Further exploration of the

algorithms applied to a variety of data sets is needed in order to constrain their exact regions of

applicability.

Nevertheless, the good performance of the algorithms on the simulated data set indicate that if

the assumptions are met exactly, correct results can be obtained. Naturally it remains to identify

what modification to the algorithms are necessary for them to apply to the real data with the

same degree of robustness, but there seems to be a reasonable chance that such tuning can be

accomplished.
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8 Conclusion

This conclusion has two complementary functions: one to summarize what has been shown in this

dissertation, the other to point out what further work remains to be done, i.e. to highlight what has

not been successfully demonstrated or accomplished here.

Chapters 1 introduced and contextualized leaf ecophenetics, the method developed in this dis-

sertation. In chapter 2, I addressed the basic question asked in my thesis: whether leaf architectural

data (as represented in a simple numerical coding scheme) contain extractible information about

dicot forest ecosystems. Chapters 3 through 6 then provided examples of ways in which these data

could be extracted and made to elucidate biological questions. Finally, chapter 7 proposed a new

practical algorithm for classifying things like floras about which data is most naturally collected as

structured factors.

More specifically, the basic leaf architectural data collected are organized in a sites-by-variables

matrix where, for instance, the sites are represented by the rows and the variables by the columns.

In chapter 2, I showed how two published descriptive systems (CICs and CLAMP), which provide

different sets of variables, nevertheless produce similar classifications; and how the classifications

produced are not obscured by the process of data collection and that they are reasonable in the

light of prior knowledge about the ecosystems being classified. In chapter 3, I treated the rows as

time periods and used a classification of the rows to argue that the effect of the Cretaceous/Tertiary

boundary event on plant ecosystems in North America should be described as a mass death, not a

mass extinction. This conclusion was based on the assumption that the paleobotanical literature

(as represented by the Compendium Index) accurately reflects biological dynamics. I also pointed

out the scale-dependence of extinctions, temporally, geographically, and taxonomically. In chapter

4, I performed a global meta-analysis of published CLAMP data and identified one major problem

affecting it: inhomogeneous spatial sampling. In chapter 5, I illustrated how this problem can

be addressed by using synthetic floras and identified a previously unknown non-linearity in the

relationship between the percentage of entire leaves and mean annual temperature. Having dealt

with temporal and geographical variation, in chapter 6, I turned to taxonomic relationships and

showed how the leaf-architectural signal is not merely an artifact of phylogenetic relationships.

Discussion of how to interpret a leaf architectural signal revealed problems with treating variables

that are in fact structured as independent (an issue that had also arisen in chapter 4). Finally, in

chapter 7, I proposed a new way of subdividing a matrix of counts based on such structured factors.

To describe the methods developed in chapter 2 with applications as shown in chapters 3–6,

I have coined the term ecophenetics, in the hopes that putting a name on a method will make it

easier for others to employ it. The method is characterized by a focus on ecology and environment
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(broadly construed), hence the prefix ‘eco-’; and the quantitative or semi-quantitative description of

the plant body or phenotype, hence ‘phenetics’. No component of the method is new: quantitative

architectural description of leaves, aggregating leaf descriptions by flora, the focus on classification

and the particular graphical and algorithmic tools used for classification have all been used before.

None of the components of the method are inalienable: it would be perfectly reasonable to use my new

method for classification by structured factors, but apply it to flower and fruit morphology instead of

leaf architecture; or to retain the focus on leaves but rely to a heavier degree on eigenvector methods

of data summary. Although no individual component of the method is new, innovations include

the application of such algorithmic or phenetic tools to old ecological questions about vegetation

classification and the reliance on functionally important leaf architectural data.

A potential user of this new method might ask what else is needed to allow ecophenetics to enter

textbooks as an established paleoecological methodology. Obviously it would benefit from continued

development. I see two specific directions in which it could be improved: first, the variables that I rely

on in this dissertation were not designed or chosen for the purpose to which I put them. CICs were

intended for fossil identification; CLAMP variables for estimation of paleoclimates. Both are over-

split in the sense that variation is spread out over too many variables for efficient description of leaves

for ecological purposes, so reducing the number of variables would be a significant improvement.

An improved set of variables for ecological characterization of angiosperm leaves would be:

1. Size (e.g. area)

2. Aspect ratio (e.g. length/width)—measures perimeter-to-area-ratio

3. Moment—measures distance of photosynthetic area from its attachment to closest abscission

4. Margin dissection (e.g. perimeter to area ratio)—measures toothiness

5. Shade diameter (e.g. diameter of maximal included disk)—measures lobation

6. Organization—measures efficiency of vascularization and structural reinforcement

7. Drip tips

8. Compounding

These variables were not used in this dissertation because a large body of data is needed to

characterize variation. The scope of a doctoral dissertation is not extensive enough to support

inventing a new set of variables and then using the newly invented variables to compiling a large

enough body of data to be interesting. Thus I was limited to the methods of description that had
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published data associated with them. This leads to the second improvement from which ecophenetics

would benefit: data sharing.

As electronic data storage and automated methods for data collection become standard, paleon-

tology, as well as other natural historical sciences, is undergoing a transition from having too few

data to having too many. Reasonable scientific conclusions are no longer typically made from little

information that must be extrapolated to cover missing cases. Instead the standard situation is to

have too many data to determine what is meaningful. When only a few data points are available, a

great deal of time is spent analyzing them. Any biases introduced by collection and analysis can at

least be fully discussed, if not quantified. When vast amounts of easily-collected data are available,

however, small biases in the collection process can easily swamp signals present in the data. Such

biases or inconsistencies must be caught and fixed.

The solution I propose is analogous to the open-source software movement. Since the 1980s, a

tremendous number of programmer-hours have been donated to the public on the grounds that in a

non-zero-sum game (positive feedback machine) collaboration is a more advantageous strategy than

competition, which in such a situation is fundamentally maladaptive. The production and analysis

of eco-morphological data clearly depends on positive feedback: the more and better data others

produce, the more valuable mine become. Therefore agreement among paleobotanists on common

standards for data collection, combined with free and frequent data comparison is the second change

that could dramatically increase the value of ecophenetics as a method. In systematic paleobotany,

this fertilization effect has been noted and has led to the production of some more-or-less open and

public databases like the Paleobiology Database (PBDB) and MorphoBank (Paleobiology Database;

O’Leary and Kaufman 2007). While both of these attempts have serious problems that may prevent

either one from implementing ecophenetic data-sharing, they provide examples on which such an

ecophenetic data-exchange could be built.

Finally, ecophenetics will retain some inherent limitations even if these improvements can be

made. No analysis, ecological or otherwise, can improve on poor data. The quality of the fossil

record cannot be improved and biases due to taphonomy and collection procedures can only be

explained and minimized, never eliminated. Moreover, forcing qualitatively different things into

the same descriptive framework will always be difficult: a Carboniferous coal-swamp forest may

share characteristics of a modern alpine meadow but discovering architectural or morphological

measures to reflect those similarities accurately may not be possible. At some level, the only way

to compare incomparables is with the most flexible of classificatory tools, language. Equifinality—

when several different processes can lead to indistinguishable outcomes—provides a point beyond

which quantitative analysis cannot penetrate. Another way of looking at this is that independent
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information is needed to deconvolute multiple signals: playing two different radio stations at the

same time prevents either one from being heard properly. Leaf architecture, like many biological

properties, may ultimately reflect many different causes interacting with too much complexity to be

separated fully from knowledge of their effects alone.

In concert with existing complementary methods of data collection and analysis, ecophenetic

examination of the plant fossil record has the potential to answer historical questions about what

the planet’s landscape looked like in the distant past, and to make predictions about what it is

likely to look like in the remote future. Moreover it can identify regularities in the responses of

plant ecosystems to their biotic and abiotic environments. Thus even when predictions about the

future turn out to have been wrong, negative results will still improve our methods for making

such predictions. Awaiting these potential improvements and noting inherent limitations, I believe

ecophenetics can provide a useful addition to the toolbox of a plant paleoecologist.
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