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LOOSENING THE CLAMP:
AN EXPLORATORY GRAPHICAL APPROACH TO THE CLIMATE LEAF 

ANALYSIS MULTIVARIATE PROGRAM

W.A. Green

ABSTRACT

The Climate Leaf Analysis Multivariate Program (CLAMP) is an established meth-
odology for physiognomic analysis of dicot leaf floras. This paper uses a meta-analysis
of four studies that provide CLAMP data on 245 floras from Asia, Africa, and North and
South America to demonstrate the application of a new analytical methodology for the
exploration of the relationship between leaf morphology and environment. This meth-
odology involves the application of a generalized "pairs" plot or scatter plot matrix
(SPLOM), a form of graphical analysis for multivariate data. It is compared with the
results from regression, hierarchical cluster analysis, principle components analysis,
and canonical correspondence analysis. Analysis of the available data using pairs plots
reveals extensive multiple covariation among explanatory leaf physiognomic variables
and identifies sources of systematic error that eigenvector ordination methods tend to
conceal. Pairs plots provide a supplementary method for analyzing complex multivari-
ate data on leaf physiognomy and contribute to biological understanding of leaf–envi-
ronment interactions. Because pairs plots allow more flexible investigation of
multivariate data than existing eigenvector and regression-based approaches, they
may prove useful not only for analyzing CLAMP data, but also in exploring multiple
covariation in other complex paleontological data sets.
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INTRODUCTION

As paleontological data become more quanti-
tative, multivariate, complex, and voluminous, the
choice of tools for data analysis acquires a greater

influence over the biological and geological conclu-
sions that are drawn from a given body of data.
Either the data must be processed, summarized,
its dimensionality reduced, and its details
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obscured; or we need new tools to handle the pre-
sentation and publication of larger, more complex
data sets. In this paper, one such new tool—the
"pairs" plot—is suggested as a way of improving
the standard procedures for examining the relation-
ship between leaf architecture and environment.

The Climate Leaf Analysis Multivariate Pro-
gram (CLAMP) is a method of analyzing fossil leaf
assemblages or floras (specifically those deriving
from the woody dicotyledonous component of for-
est ecosystems) by quantifying a set of significant
morphological or architectural leaf variables and
relating these variables (averaged over the flora) to
climate parameters. Such a procedure also allows
estimation of ancient climate parameters by unifor-
mitarian extrapolation of patterns found in the dis-
tribution of leaf attributes in modern vegetation
(Wolfe 1993, 1995, Wolfe and Spicer 1999).

This general notion, which is sometimes
referred to as "leaf physiognomy", has been
accepted since the early twentieth century when
Bailey and Sinnott (1915) pointed out the strong
correlation between the temperature in which mod-
ern forests grow and the proportion of the species
that compose them that have "entire" (i.e.,
untoothed) leaves. From this observed correlation
in the modern world, a determination of the per-
centage of species with entire margins in a fossil
flora allows the estimation of the temperature in
which it grew. With the introduction of computers
that could handle algorithmic classification and
ordination of multivariate data, Wolfe (1993) pro-
posed a multivariate method of coding leaves (orig-
inally based on 29, but later updated to 31
variables) that was intended both to improve the
precision of temperature estimates over the
univariate linear regressions that had preceded it
and to allow the estimation of other climatic vari-
ables.

In addition to temperature, other variables that
have been more-or-less successfully estimated
using CLAMP data are precipitation (e.g., Wilf et al.
1998), and moist enthalpy, which can be used to
calculate paleo-elevation (e.g., Forest et al. 1999).
The linear relationships between leaf size and pre-
cipitation and between leaf physiognomy and moist
entropy are less clear than the relationship
between leaf margins and temperature. As
Kennedy (1998) points out: “It appears that
CLAMP provides a relatively accurate estimation of
temperature, but only a general estimation of pre-
cipitation.” Other variables (including many related
to timing of changes in temperature and precipita-
tion, like growing season precipitation, or warm

month mean temperature) have been studied less
extensively.

Despite the relatively widespread application
of CLAMP methods, its procedures have been criti-
cized as overly complex and no more informative
than simple regression models (Wilf 1997, Wilf et
al. 1998). Nevertheless it provides the only well-
known procedure for collecting multivariate data on
leaf morphology, and in certain contexts has
become a standard way of determining ancient ter-
restrial climatic parameters. Therefore the focus is
almost exclusively on the CLAMP method, though
some of the issues identified may also apply to
other recent leaf physiognomic studies like the
"digital" approach of Huff et al. (2003) and Royer et
al. (2005). Much of the debate about the advan-
tages of the CLAMP method over various regres-
sion models centers around statistical details: the
goal has been to maximize the "explanatory
power" of the method and minimize the standard
errors of the temperature estimates that it provides.
This may not, however, be the best way to choose
an analytical methodology, because we have no
satisfactory mechanistic explanation of the rela-
tionships between most leaf morphological charac-
ters and climatic variables. Thus we are by
definition engaged in data analysis: that is, we are
trying to determine what measured quantities sig-
nify and to design empirical models to predict
them, not trying to test models based on theory
against real data. Minimizing analytic error and
maximizing explained variance produce a model
that best explains a given set of data. Whether this
model will ever explain any other data, be of practi-
cal predicative utility, or suggest fruitful lines of
future inquiry, is a very different question.

In the following consideration of the available
data, several issues with the CLAMP method that
ought to be addressed become apparent. The
focus throughout is on the analytical choices made,
not on the collection of raw data: for the purposes
of this discussion, it is assumed that the matrix of
CLAMP scores is a relatively good reflection of the
woody dicot leaf forms present in a living flora. No
coding scheme is perfect, but the CLAMP method
is the only such coding method that has been
widely applied. In contrast, the statistical methods
for analyzing CLAMP data represent only a small
fraction of the available procedures for multivariate
data analysis. Therefore, it seems necessary to
explore to what extent the results of a CLAMP
analysis are sensitive to the analytical methods
chosen and to inherent biases in the data. Are the
eigenvector and regression techniques that are
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generally applied to these data appropriate? What
other techniques should be tried? In short: how can
we improve the methods used to analyze CLAMP
data? The alternative or supplementary analytical
program proposed by this paper is based on graph-
ical data analysis using pairs plots and seems to
show substantial advantages over eigenvector
approaches for exploring the relationships between
dicot leaves and the environments in which they
grow. Though the focus of this examination is spe-
cifically aimed at one type of paleobotanical data,
the general issue of whether exploratory graphical
analysis is more appropriate than data-reduction is
applicable to many other paleontological data sets.

MATERIALS AND METHODS

The data available for this analysis come from
four studies. The first and largest, WOLFE1731, is
an updated version of the data published by Wolfe
(1993), sometimes referred to as "CLAMP 3B"
(e.g., Jacobs 2002). It is available on the web as
two Excel spread sheets (.xls files) containing
respectively the morphological and environmental
data for 173 floras, points representing which are
colored black in the figures in this paper. For the
103 floras that were published in 1993, the number
of species in each flora and its latitude, longitude,
and elevation were typed in from Wolfe (1993). The
geographical distribution of this data set is mainly
restricted to the continental United States and
Japan, though there are a few floras from Alaska
and continental east Asia. These data are available
in the Appendix, and include i) the climatic vari-
ables and ii) the morphological leaf scores.

The second data set, JACOBS, is from Jacobs
(1999, 2002) who gives CLAMP scores and asso-
ciated environmental data for 30 floras in tropical
Africa. This study used the original 29-variable
coding scheme, so there are two variables with all
values missing. Points from JACOBS are colored red
in the figures in this paper. The third data set, GRE-
GORY, is from Gregory-Wodzicki (2000), provides
CLAMP scores and environmental data for 12 flo-
ras in Bolivia and is colored green here. Finally,
Kowalski (2002) provides CLAMP scores and envi-
ronmental data for 30 floras in tropical South Amer-
ica, which are represented by blue points here.

The data in JACOBS, GREGORY, and KOWALSKI
were scanned in from tables in the cited publica-
tions, processed for automatic text-recognition,
and then hand-edited and spot checked for accu-

racy. The data were read into the open-source pro-
gram R (R Development Core Team 2004) from
tab-delimited text files, which are available in the
supplementary data archive and preprocessed so
that all studies were in comparable form. The code
used is given in the script file in the data archive.
The data matrices are not printed because all the
data have appeared in print before.

The completed data set consists of 245 floras
and is stored as a series of data frames in R with
the suffix -ALL for the raw frames containing both
morphological and environmental data, and a suffix
-CLAMP for the cleaned CLAMP scores. The com-
plete data set is ALL, and the supplementary mate-
rial typed in from Wolfe (1993) is a separate data
frame called wolfe1993. Stranks (1996) provides
additional data from New Zealand that have not yet
been processed.

The 31 physiognomic variables described in
Wolfe (1993, 1995) are listed in Table 1. Unfortu-
nately, unless growing season precipitation is
taken to be the same as annual precipitation, the
only environmental variable that appears in all four
data sets is mean annual temperature (MAT), so
our comparison of different studies is restricted to a
single response variable. This is unfortunate
because the main point of applying a multivariate
framework is to elicit information about multiple
response variables. Because little of the true
uncertainty in a temperature estimate comes from
analytic error in the explanatory variables (this con-
tention is defended below), it is highly unlikely that
a multivariate framework will really improve tem-
perature prediction much, however much of it can
be made to reduce residual error of the regression.

RESULTS

Exploring the relationship between a single
pair of variables is simple and intuitive. For
instance, as is well-known, a plot of the percentage
of untoothed leaves (P) against MAT shows a
strong linear relationship. Figure 1 shows this rela-
tionship by plotting all available CLAMP data along
with associated least-squares regression lines.
The regression line for all the data is shown as a
dotted line and limiting the regression to the floras
for which information is available on the total num-
ber of species coded does not change the line per-
ceptibly. The points are colored to show which
study they came from and the thicker, colored lines
show the results that are obtained when separate
regressions are performed for each study. These
regression lines are cropped to the extreme ranges1. Additional data files are available from the PE website at this 

URL: http://palaeo-electronica.org/2006_2/clamp/index.html 
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of each data set, which are shown by colored bars
near the edges of the plot.

Above and to the right of the main bivariate
plot are histograms showing the marginal distribu-
tions of each variable. Note that both of these dis-
tributions are polymodal, probably because of

irregular geographical sampling: there are rela-
tively few floras representing the intermediate tem-
peratures because the latitudes that would supply
them (the horse latitudes) are kept dry by Hadley
circulation and therefore have not provided as fer-
tile a source for "appropriate" floras to study.

It is evident from this univariate exploration
that the "study effect" (the effect on the regression
line of which study the data is drawn from) is impor-
tant, though it cannot be determined from this rep-
resentation whether it is due to poor repeatability of
the coding or whether it is caused by spatial auto-
correlation. In this regard, note how the slope of
the regression line in the two South American stud-
ies (GREGORY and KOWALSKI) is very similar, though
the intercepts differ, while JACOBS’s African data
have a slope that is quite different from that found
in the other three (predominantly New World) stud-
ies. This phenomenon of slope having a greater
spatial autocorrelation than intercept has also
recently been pointed out by Mosbrugger et al.
(2005). This incomparability of models based on
training sets from different regions has also been
frequently remarked upon (Stranks 1996, Jacobs
2002, Spicer et al. 2004, Greenwood et al. 2004),
but with equal frequency has been ignored when
citing binomial sampling errors or standard devia-
tions as if they were true uncertainties.

To expand our consideration from one explan-
atory and one response variable to 31 explanatory
and one response is not trivial. Perhaps the sim-
plest solution is the reduction of all 31 explanatory
variables to a single distance metric. Clustering the
available 245 floras hierarchically shows imperfect
clustering by study (the "blocks" of color) in Figure
2, which shows dendrograms produced by an
agglomerative hierarchical algorithm using the
Euclidean distance metric under two clustering pro-
cedures (single-linkage and complete linkage),
with different properties. (Single linkage clustering
finds "spherical" clusters of objects in n-space;
complete linkage finds strings of closely-connected
objects.)

With a few exceptions (e.g., Traiser 2004)
such clustering procedures have not been used
extensively in leaf physiognomy, perhaps because
they produce no explicit models or quantitative
estimates of independent variables, but merely
give a visual display of similarities among floras.
From such a display, we can nevertheless qualita-
tively conclude that the studies do cluster together,
but not without noise.

Much more prevalent—perhaps even ubiqui-
tous among explicit considerations of CLAMP

Table 1. Variables in 31-dimensional Matrices.

VARIABLE NAME 
FROM Wolfe 

(1993)

ABBREV. 
USED 
HERE COMMENTS

1 Lobed Lobd

2 No.Teeth Entr

3 Regular.teeth TReg

4 Close.teeth TCls

5 Round.teeth TRnd

6 Acute.teeth TAcu

7 Compound.teeth TCmp

8 Nanophyll ZNan Missing in 
JACOBS

9 Leptophyll.1 ZLe1

10 Leptophyll.2 ZLe2

11 Microphyll.1 ZMi1

12 Microphyll.2 ZMi2

13 Microphyll.3 ZMi3

14 Mesophyll.1 ZMe1

15 Mesophyll.2 ZMe2

16 Mesophyll.3 ZMe3 Missing in 
JACOBS

17 Emarginate.apex AEmg

18 Round.apex ARnd

19 Acute.apex AAcu

20 Attenuate.apex AAtn

21 Cordate.base BCor

22 Round.base BRnd

23 Acute.base BAcu

24 L.W.< 1:1 Rlt1

25 L.W.1-2:1 Rb12

26 L.W.2-3:1 Rb23

27 L.W.3-4:1 Rb34

28 L.W.> 4:1 Rgt4

29 Obovate SObo

30 Elliptic SElp

31 Ovate SOvt
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data—are eigenvector techniques for rotating mul-
tivariate vector spaces and re-projecting data along
a few major axes of variation. The simplest and
most general of these is principle components
analysis (PCA). Originally Wolfe (1993) relied on
correspondence analysis, and then (in 1995)
switched to canonical correspondence analysis, or
CCA (Ter Braak 1986). Both methods were specifi-
cally designed for comparison of environmental
data with species distributions and have become
fashionable in community ecology. Ter Braak
(1986) makes it very clear, however, that:

The rationale of the technique [CCA] is
derived from a species packing model
wherein species are assumed to have Gaus-
sian (bell-shaped) response surfaces with

respect to compound environmental gradi-
ents. (Ter Braak 1986, p. 1168) 

and that
The vital assumption is that the response
surfaces of the species are unimodal, the
Gaussian (bell-shaped) response model
being the example for which the methods
performance is particularly good. For the
simpler case where species-environment
relationships are monotone, the results can
still be expected to be adequate in a qualita-
tive sense....The method would not work if a
large number of species were distributed in
a more complex way, e.g., bimodally. 
Ter Braak 1986, p. 1177
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Figure 1. Comparitive bivariate plot of temperature (MAT) against percentage untoothed leaves (P) for 245 floras and
four studies, color-coded by study. Least-squares regression lines, marginal distributions, regression statistics, and
the approximate geographical locations of the study areas are also shown. Points for which data are available on how
many species are represented have error bars showing plus and minus the binomial sampling error. The size of the
point plotted is also proportional to the sample size, except in the case where data are missing. The same colors rep-
resenting the four studies are used in all subsequent figures.
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There are a priori reasons to expect species
to have unimodal or linear distributions along
envirnomental gradients, but this logic does not
necessarily hold for morphological variables like
the proportion of leaves with attenuate apexes. As
can be seen from the pairs plots presented below,
some of these relationships between morphologi-
cal variables and temperature are arched or para-
bolic. Therefore the theoretical applicability of CCA
to morphological variables averaged over floras on
a continental or global scale is highly questionable.
Like many other statistical methods, CCA is also
vulnerable to non-linearity and multiple colinearity:

When the data are collected over a sufficient
habitat range for species to show nonlinear,
nonmonotonic relationships with environ-
mental variables, it is inappropriate to sum-
marize these relationships by correlation
coefficients or to analysis the data by tech-
niques that are based on correlation coeffi-
cients, such as canonical correlation
analysis. 
Ter Braak 1986, p. 1167

and
When the environmental variables are
strongly correlated with each other—for

example, simply because the number of
environmental variables approaches the
number of sites—the effects of different
environmental variables on community com-
position cannot be separated out and, con-
sequently, the canonical coefficients are
unstable. This is the multicollinearity prob-
lem. 
Ter Braak 1986, p. 1170f.

Many statistical procedures—including sim-
ple linear regression—work in practice even when
their assumptions are unrealistic, so this alone
would not invalidate the application of CCA to
CLAMP data. The argument made here is not that
CCA produces incorrect results, but merely that the
ubiquitous application of it to CLAMP data may be
evidence of excessive analytical rigidity.

Most publications explicitly using CLAMP
have followed Wolfe’s lead even to the point of
using Excel spreadsheet macros in the files that
can be downloaded from the CLAMP website and
a commercial program called CANOCO (Lep and
milauer 2003) specifically designed to perform
CCA. In fact CCA is now available in many gen-
eral-purpose statistical packages, including three
different implementations for R, and therefore con-
tinued reliance on compiled, proprietary software
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Figure 2. Complete linkage (top) and single linkage (bottom) agglomerative dendrograms colored by
study showing (imperfect) clustering by study and area for 245 floras clustered according to the 31
CLAMP variables. 
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seems additional evidence of methodological
canalization. As Figure 3 illustrates, moreover, the
analysis of CLAMP data is not a case in which PCA
and CCA produce significantly different results: the
top two bivariate plots are principle components;
the bottom two are canonical correspondence
axes.

Note how in the upper left quadrant of Figure
3, the bivariate plot of the first two principle compo-

nents clearly discriminates KOWALSKI from the other
two studies. When JACOBS is added, however, (the
upper right quadrant of Figure 3) the gap seems
much less distinct. This illustrates how sensitive
this form of analysis is to sampling. The more data
that are added, the harder it is to discriminate clus-
ters that looked distinct when there were fewer
points. Although only PCA and CCA have been
tested, it is difficult to imagine a realistic situation in
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Figure 3. Principle components analysis biplots (top) and canonical correspondence analysis biplots (bot-
tom) of the data. The left pair of biplots uses all 31 variables present in three of the studies; the right pair
reduces the number of variables to 29 and shows all four studies. Note the basic similarity between the
PCA and CCA plots: the scatters of points are viewed from different angles, but the relationships between
studies are similar. 
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which other related eigenvector methods would
lead to radically different interpretations of CLAMP
data, although they may—like PCA and CCA—dif-
fer in the exact values they produce.

Both in the case of hierarchical cluster analy-
sis and eigenvector analysis, it is apparent that the
study effect contributes some structure to the data
but by no means determines them. Formally, we
could also use the multivariate t test (Hotelling’s
T2) to check the pairwise null hypotheses of multi-
variate equivalence of means. In all 4-chose-2 = 6
cases we are forced to reject the null with p-values
less than 10-6. In simple terms, the studies could
not possibly all be equivalent. Note that the Hotell-
ing code (see data archive) can not deal with miss-
ing values, so the number of variables had to be
reduced to 29 in the three cases out of the six pair-
wise comparisons where variables were missing.
Whatever the statistical logic, the data are clearly
affected by the source from which they were
obtained, though it cannot be determined with the
available information whether this is due to the
studies being in different geographic regions or
whether people actually code leaves differently.

A dendrogram reduces 31 variables to a sin-
gle distance metric, eigenvector methods reduce
31 variables to a few principle components, of
which two are shown in Figure 3. What about the
remainder of the variables? One response is: the
first two principle components account for a large
proportion of the variance, so the other variables
do not matter much. This seems to be a limited
way of looking at the process of data analysis: if
only the axes of maximum variance are of interest,
then why collect multivariate data? Multivariate
data are often collected to answer more than one
question, and a variable that answers a particular
question (like the presence of teeth answering
questions about temperature) may say nothing
about another question (regarding, for instance,
plant growth form). To choose variables exclusively
from mathematical criteria like variance maximiza-
tion seems to abdicate the responsibility for inter-
preting results biologically.

One way of looking at more variables is called
a scatter plot matrix (SPLOM; Basford and Tukey
1999) or, more simply, a pairs plot. Figure 4 shows
all the pairwise relationships between the original
two variables plotted in Figure 1 (P and MAT), the
first two principle components (PC1 and PC2), the
first canonical component (CA1, the primary axis
corresponding to the matrix of sites), and the first
constrained canonical component (CCA1, the pri-

mary axis corresponding to the environmental
matrix).

As can be seen, a pairs plot allows the plotting
of a very large number of multivariate data in a
compact form. The question then arises: what is
the value added by eigenvector methods of data
reduction if it is possible to plot and examine the
raw data themselves? In Figure 5, all the 31
explanatory variables and MAT are presented in
this pairwise fashion, with additional details as
described in the figure caption.

This is a very concentrated way of presenting
data; it plots 32 × 245 = 7840 two-digit numbers,
the equivalent in characters of about twelve and a
half manuscript pages of text. Each of the small
plots above the matrix diagonal is a similar bivari-
ate plot showing the relationship between two of
the 32 variables. Thus the scatter plot in the 32nd
column and 2nd row of the pairs plot is a reduced
version of Figure 1; it is simply the bivariate plot of
P against MAT. The second and 32nd of the diago-
nal cells also correspond to the marginal histo-
grams in Figure 1. The shadings below the
diagonal are obtained by performing four two-sided
hypothesis tests for each cell:
H0: slope of the least squares regression line = 0

H0: Pearson’s product-moment correlation 
coefficient = 0
H0: Spearman’s rank order correlation coefficient = 
0
H0: Kendall’s rank order correlation coefficient = 0

In each case the alternative hypothesis is the
equivalent inequality.

The cell is colored white if the mean of the
three correlation coefficients is positive and if all
tests reject; black if the mean of the three correla-
tion coefficients is negative and all tests reject; and
medium grey if all tests fail to reject. If some but not
all of the tests reject, the cell is colored light grey or
dark grey depending on the sign of the mean of the
correlations of the tests that are significant. In all
cases the color of the text is black if the mean of
the three correlation coefficients is positive and
white otherwise. All tests are made at the level [ =
0.05 / number of comparisons, where the number
of comparisons is (number of variables) * (number
of variables - 1) / 2, i.e., the 5% level with Bonfer-
roni correction for multiple comparisons.

This representation of the data allows us to
examine complex multiple-covariation among the
explanatory variables in detail. For instance, com-
pare the second column with the third-through-sev-
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enth column block. They are inverses of each
other, as they must be, because the second col-
umn represents the percentage of species lacking
teeth and the third-through-seventh columns give
the percentage of species with particular types of
teeth. Another interesting block of covarying values
is provided by the leaf sizes: columns and rows 8
through 18. Here, the smallest four leaf size cate-
gories are all strongly positively correlated with
each other as are the largest four leaf size catego-
ries, while there is a strong negative correlation
between the small and large blocks. Only the mid-
dle three size categories are not strongly collinear.

Graphical display of this sort of data makes the
strong covariation among the variables apparent
and indicates that any statistics calculated from
them that assume independence should be treated
with caution.

At such a small scale, it can be difficult to see
details of the scatter plots, so Figure 6 shows
another pairs' plot of a subset of the variables.

In this plot, in addition to the scatter plot
matrix above the diagonal, the numbers in the
blocks below the diagonal give all of the pairwise
correlation coefficients (the two common non-para-
metric correlation coefficients, Spearman’s ρ and
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Figure 4. Traditional pairs plot as used in Basford and Tukey (1999). This is simply a matrix of scatter
plots showing the relationships between each pair of a set of variables. All the data here are restricted to
the original 29 CLAMP variables. In particular, note the similarity between PC1 and CCA1, demonstrating
how little it matters which eigenvector method is chosen. Plots above the diagonal are inverses of the
plots in the lower diagonal. Note that the plots in the third row, second column and sixth row, fifth column
are exact duplicates of the right-hand two plots in Figure 3. 
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Figure 5. Elaborated pairs plot of 31 explanatory and one response variable. The variables are repre-
sented along the top of the matrix by the figures from Wolfe (1993) that were originally used to illustrate
them, and along the left side by their abbreviated names. In two cases—"teeth regular" and "teeth
close"—the line drawings colored red also show the opposite of the character being coded, "teeth irregu-
lar" and "teeth distant". Groups of related variables are shown by the colored bars along the top and left
and those groups of related variables that are constrained to sum to 1 are so marked along the bottom of
the matrix. Above the diagonal are scatter plots like the example shown in Figure 1; below the diagonal,
the white, black, and grey squares show whether the relationships between the variables are statistically
significant. The white squares show a strong positive relationship between the variables, the black a
strong inverse relationship, and the intermediate shades of grey show weaker or absent relationships.
Along the diagonal are plotted histograms of each of the 32 variables (the marginal distributions for the
bivariate plots).
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Figure 6. Pairs plot of selected variables. ρ is Spearman’s rank order correlation coefficient; τ is Kendall’s
rank order correlation coefficient; cor is the ordinary (Pearson’s) product-moment correlation coefficient;
and the  and p-values relate to the least-squares fitted line. Where the associated correlation tests (and in
the case of the p-value, the regression) are significant at the 5% level, the statistics are followed by aster-
isks. The blocks are white with black text if the mean of the three correlations is positive and all four of the
tests are significant, and they are light grey with black text if some, but not all of the tests are significant.
The blocks are colored black and dark grey with white text in the reverse scenarios. If none of the tests
are significant, the blocks are a medium grey and the sign of the mean of the three correlations is shown
only by the color of the text printed on them: black for a positive and white for a negative correlation. 



GREEN: LOOSENING THE CLAMP

12

Kendall’s τ as well as the ordinary product-moment
correlation coefficient) and the r2 and p-values for
the least-squares fitted line.

This reduced set of variables could have been
selected by a stepwise multiple regression proce-
dure with formal rules for adding or subtracting
variables from a model based on information crite-
ria. This has been done and it is easy to produce
models in which all terms are significant, with r2 as
high as 0.8 and p < 10-16. Since there are several
such stepwise techniques, all of which produce
about the same quality of model from different vari-
ables, there is no reason to choose one model over
another, and the variables for this smaller plot were
selected based on their perceived interest instead
of on a formal stepwise procedure.

This particular choice of explanatory variables
happens to produce a multiple linear least-squares
model for MAT with of 0.86 and p < 10-16; adding a
factor to the model showing which study each
observation came from as an additional explana-
tory variable increases the r2 significantly to 0.88.

These models could still be improved further
by continued analysis (for instance, interactions,
non-linear terms, and variable transformations
were not even tried). It does not seem valuable,
however, to spend time massaging a model until
the issues that the univariate case brought up (like
incomparability of studies) are taken care of.

DISCUSSION

The CLAMP method can be criticized at two
levels: data collection and data analysis. This
paper is concerned primarily with improving the
methods of analysis, but there are a few problems
with the analyses that are based in the data collec-
tion.

First is the fact that the raw (by species)
scores have, except in doctoral dissertations
(Stranks 1996, Kennedy 1998) seldom, or never,
been published. This means that some of the most
important and interesting questions about phyloge-
netic distribution of leaf morphological variables
and the differences among plants of different
growth form (habit) can not be asked. Some recent
studies like that by Kennedy et al. (2002) have not
even published the CLAMP scores averaged by
flora, but have only printed biplots of eigenvector
loadings. This form of presentation is so highly pro-
cessed and incorporates so many assumptions
that it makes interpretation of the results difficult
and reanalysis of the data impossible.

Second, Wolfe’s (1993) selection of charac-
ters was explicitly based on preliminary eigenvec-
tor analyses, for instance:

During one stage of the study, I expanded
the character set to include about 20 charac-
ter states additional to [the original 29].
Judging from eigenvalues and percent of
total variance accounted for, these charac-
ters either added nothing or even lowered
both eigenvalues and percent variance
Wolfe 1993, p. 20. 

To reject potentially interesting variables from
a coding scheme on the basis of low eigenvalues
and percent of variance accounted for is to allow
the statistical horse to bolt: you proceed quickly,
but have little control over the direction you are
traveling. Among the character states rejected
were those relating to compound leaves, spinose
teeth, and inrolled or thickened margins, all of
which have clear mechanical adaptive significance.
If we hope to obtain ecological or environmental
data from leaf physiognomy as well as information
about climate, such character states should be
retained.

The same criticism goes for lumping together
characters like "teeth round" and "teeth appressed"
merely because "combining the states produced
both higher eigenvalues and percent variance.
(Wolfe 1993, p. 24).

Thirdly, the description of some of the charac-
ter states seems ambiguous. Though it is not pos-
sible without a comparative study to say for certain
that interpretations of the character descriptions
would vary, it is not clear whether “0.25 if the teeth
are both regular and irregular and some leaves
have teeth” (Wolfe 1993, p. 24) should be inter-
preted as “0.25 if the teeth are regular and/or irreg-
ular and some leaves have teeth” or as “0.25 if the
teeth are all regular or all irregular and some
leaves have teeth.”

In the case of deeply lobed leaves, the leaf
size is supposed to be scored from a single lobe,
but the aspect ratio and shape still refer to the
overall leaf, whereas in the case of a compound
leaf the leaflet is what is scored for size, aspect
ratio, and shape. This is particularly problematic in
genera like Rosa in which a plant can have com-
pound, deeply lobed, and simple leaves on the
same branch.

Fourthly, the scored variables are divided into
sections relating to common topics. Leaf size, for
instance is coded as proportions of leaves falling
into nine size classes. The scores in some of these
sections, like leaf size, aspect ratio, or shape must
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sum to one while the scores in the section describ-
ing teeth and lobation do not have a constant sum.
This means that the presence of teeth is implicitly
weighted more heavily in the overall description of
the flora than, for instance, the leaf size, and it is
not clear that any normalization procedure can cor-
rect this bias. The restriction of groups of variables
to a constant sum introduces dependence and
implicit weighting that are hidden by eigenvector
analyses but made apparent by a graphical
approach (see Figure 5).

Despite these issues with the process of cod-
ing, no morphological coding scheme could be
ideal, and these criticisms of CLAMP are offered in
a spirit of improving what is the only such system
currently available in the published literature. In
particular, Wolfe’s original article (1993) was much
more broadly focused than some subsequent pub-
lications: a discussion of axes of variation other
than those corresponding to temperature and pre-
cipitation made it not only a contribution to paleocli-
matology but also ecologically and botanically
interesting.

More important than these problems in the
coding are the true uncertainties associated with
the estimation of paleoclimatic variables. It is gen-
erally accepted that the leaf physiognomy of a flora
indicates the general climate regime of the area in
which it grew: "tropical," "sub-tropical," or "temper-
ate," and "wet" or "dry". These are categories that
not only any botanist, but many laymen would rec-
ognize from simple leaf silhouettes. Beyond this
there remains doubt as to the degree of precision
and reliability that leaf physiognomy can provide,
but there has been relatively little general discus-
sion of what causes the real uncertainty in the pro-
cedure of estimating ancient environmental
parameters from leaf morphology.

It is noticeable that two doctoral dissertations
that have examined CLAMP data in detail are less
sanguine about the errors associated with the
methodology than most published articles. Stranks
(1996) cautions that “the method is still in a devel-
opmental stage with many questions remaining
unanswered” (Stranks 1996, p. 122) and “that a
relationship exists between physiognomy and cli-
mate is clear. Whether it can successfully be
applied to fossil floras in order to extract climate
and altitude, however remains to be resolved”
(Stranks 1996, p. 124). Though she does not use
the term “spatial autocorrelation,” she correctly
observes that “the response of southern hemi-
sphere sites in general cannot be compared to
those of northern hemisphere sites” (Stranks 1996,

p. 124). Greenwood et al. (2004) support this con-
tention. Kennedy (1998) lists several sources of
potential error and admits that “qualitative sources
of error, such as subjectivity in morphotyping and
taphonomic bias, could potentially introduce large
amounts of uncertainty into palaeoclimatic interpre-
tations” (Kennedy 1998, p. 20). In contrast to this
conservatism, many publications suggest that:
“CLAMP...is a powerful paleoclimate proxy with the
ability to yield quantitative data on past tempera-
tures, precipitation, growing season length, and
humidity, as well as enthalpy” (Spicer et al. 2005, p.
429).

Some of the sources of error that must be
dealt with are, in rough, increasing order of relative
importance or difficulty of quantification:

1. Binomial sampling error. This is the simple
and well-understood error associated with the
random selection with replacement of n
leaves out of a population of which a propor-
tion P have untoothed margins. If this selec-
tion is repeated many times, the standard
error of P should approach . This imposes a
minimum error on the order of a few degrees
with floras of about 30 species. In floras that
have many more species (e.g., >100), the
binomial error becomes insignificant (Wilf
1997).

2. Repeatablity of coding. At this stage, it is not
clear what errors may be produced by differ-
ent people coding the same floras, so this
potential source of error is not readily distin-
guishable from spatial autocorrelation or the
study effect discussed above. Future work will
invest this source of error using blind experi-
ments.

3. Spatial autocorrelation and irregular sampling.
The current sampling distribution is very poor,
but can be improved by collecting more sam-
ples where they are lacking, by gridding the
available locality data on a raster and applying
statistical tools spatially, and by creating spa-
tially distributed artificial floras from species
range data as has been done by Traiser et al.
(2005). Unfortunately, climate station data are
seldom or never available from exactly the
same places as floras are collected. Up to a
point, this can be addressed by appropriate
methods of interpolation, but errors introduced
by microclimatic variation and patchy species
distributions may continue to remain problem-
atic.

4. Inherent time-averaging. This is not an issue if
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MAT is the only dependent variable, but MAT
is a grossly time-averaged quantity that will be
perceived differently if data on, e.g., mean
monthly temperatures are compared across
studies. It is easy to illustrate how dramatically
plants have evolved to respond to the timing
of temperature change: CAM plants open their
stomata during the night when it is cool and
transpiration is reduced. As soon as one cal-
culates average daily temperatures—much
less monthly or yearly means—from an hourly
record, one loses the ability to explain an
entire evolutionary strategy that allows thou-
sands of species of plants to exist. This is an
extreme example, but the more general point
that different temporal scales will affect the
significance of variables like temperature
must be taken into consideration.

5. Other sources of noise (elevation, microcli-
mate, disturbance, soil type, systematics,
taphonomy, etc.). All of these variables are
known to be of importance at particular spatial
and temporal scales, and must be considered.
Is the sample skewed by collection of more
low-altitude floras than high-altitude? Do sec-
ondary-growth (recently cleared) forests
respond differently than primary forests? In
the absence of clear answers to these ques-
tions about systematic biases, calculation of a
stochastic binomial sampling error becomes
nearly irrelevant.

6. Uniformity through time. How far back in time
can spatial patterns observed in the modern
day be extrapolated? This is a broad question
facing all methods of reconstructing ancient
climates; a simple criterion that is often implic-
itly invoked is that a method must work
increasingly well as it approaches the present;
hence error must increase as we go back in
time.
The error figures usually associated with esti-

mates of mean annual temperature (MAT) from
leaf morphology are usually one- or two-standard
deviation analytic errors calculated by assuming
only binomial sampling error or normally distributed
stochastic variation in the explanatory variables
and then propagating this error through a regres-
sion line. When the number of species increases
much beyond a typical 30, these analytical errors
are dramatically reduced, which has led to the
appearance in the literature of, for instance, tem-
perature estimates of plus or minus a few degrees
(Burnham et al. 2001, Kowalski 2002, Kennedy et
al. 2002). Even errors of under a degree have

appeared, which as Miller et al. (in press) point out
is incompatible with a rigorous error analysis of the
relationship between P and MAT.

Errors 4–6 may be ultimately unquantifiable
and uncorrectable, but there is abundant evidence
that the issue of spatial autocorrelation can be han-
dled. Work by Thompson et al. (1999) provides
graphical tools for plotting floras in ecological
space and Traiser (2004) and Traiser et al. (2005)
give spatially distributed leaf physiognomic data
from synthetic floras for the whole continent of
Europe. In concert with the sort of exploratory data
analysis that is presented here, these techniques
may make it possible, not only to improve esti-
mates of terrestrial paleoclimates, but also to
extract additional types of data about how environ-
ments and plant ecosystems have changed
through time.

CONCLUSIONS

A graphical exploratory investigation of
CLAMP data reveals further serious and unad-
dressed statistical issues with the standard proce-
dures used to analyze such data. Exploration and
estimation are different goals. If the only utility envi-
sioned for fossil leaf floras is the production of
ever-more-precise but possibly inaccurate climate
estimates, then the current methods of publication
and analysis of CLAMP data are satisfactory. In
order, however, to understand the ways in which
plant leaves respond to environmental stimuli in
the context of real communities, we need applica-
tion of looser, more flexible tools for data analysis,
an appraisal of uncertainty that accounts for sys-
tematic bias and unquantifiable noise as well as
trivial stochastic errors, and the publication of raw
data in a form that can be compared between stud-
ies. Graphical techniques like pairs plots are effec-
tive methods of exploratory analysis of multivariate
data, but theories of biological interest like mecha-
nistic models of leaf response to environmental
variables cannot be tested against such data
unless the standard forms in which the data are
currently published are extended to include the raw
(by species) scores.

Leaf morphology remains a valuable and
under-exploited source of multivariate data. The
CLAMP method is not ideal, but it it is the best
source of data currently available. It can give satis-
factory results if the data it produces are published
and analyzed appropriately. From a biological as
opposed to a strictly paleoclimatological perspec-
tive, appropriate analysis consists of taking the “cli-
mate” out of CLAMP and allowing multivariate data
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on leaf architecture to illuminate broader ecological
questions. The pairs plot as a tool for graphical
exploratory analysis provides information on com-
plex covariation among leaf-physiognomic vari-
ables, and allows evaluation of systematic errors in
CLAMP data, neither of which can be done with
eigenvector methods of data reduction or with hier-
archical clustering. This has the potential to make
multivariate leaf-physiognomic data interesting not
only to paleoclimatologists, but also to plant mor-
phologists and functional ecologists. Moreover, the
exploratory graphical approach advocated here
may prove valuable in other paleontological data
sets where current analyses obscure interesting
detail in complex, multivariate data.
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APPENDIX

This file is an attempt to document the script,
data, and functions (in the R graphics/statistics pro-
gramming language) used in the analyses I carried
out for the article 'Loosening the CLAMP', which is
to be electronically published in {\it Palaeontologia
Electronica} in 2006. All citations should refer to
this article.

In addition to the article and this README file,
there are1:
a file called Rscript.txt in the R programming lan-

guage
a data/ directory with 5 flat tab-delimited ascii

tables,
a functions/ directory with three functions called by

Rscript.txt
Like any software, this is a work-in-progress,

so I recommend that anyone who intends to repli-
cate my results contact me for newer and better-
documented versions of these files. For anyone
with modest familiarity with the R language, how-

ever, it should be possible to run the file Rscript.txt
after making the necessary modifications for the
platform on which it is to be run. In addition to set-
ting a filepath in the indicated places, it will be nec-
essary to source() the functions in the functions/
directory. All the data have been published before
(in the cited publications) but are provided here for
the first time in digital, machine-readable form.
Note that the files were optically scanned or hand-
typed and DO contain errors. The first part of the
script file is devoted to laundering the data and
cleaning some of these errors up, but any use of
the data tables without running Rscript.txt should
expect to find errors in the data. Nor is there any
guarantee that my script has caught all the errors
to be found....

Queries and bug reports to wal-
ton.green@yale.edu (Walton A. Green, Depart-
ment of Geology, Yale University, P.O. Box 208109
Yale Station, New Haven, Connecticut, 06520). All
data and computer code are intended for free dis-
tribution under copyleft protection like GNU Gen-
eral Public License v. 2 or later.1. Files are available online at

http://palaeo-electronica.org/paleo/2006_2/clamp/index.html


