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Abstract

Biological scientists generally base their classifications on what they call ‘natural’ groups, or entities
that are supposed to exist in the physical world independently of whether or by whom they are
described or classified. Geologists are more prone to classify the things they work with on the basis
of explicitly arbitrary divisions along important gradients. Why are biologists so concerned with
‘objective’ classification? Is their search for ‘natural’ groups meaningful and important (as it has
been assumed to be for the past half century), or is it based on a confusion about what classification
is?

Introduction: what is classification?

The word classification has been used in two fundamentally different but seldom explicitly dis-
tinguished ways. On one hand the concept of classification as analogy seems to be a necessary
prerequisite for learning and abstract communication in humans and other animals; on the other
hand the notion of set-theoretic classification is a formal abstraction that does not seem to date to
much before the 19th Century. The similarity between the duality of classification and the duality
of probability discussed by Hacking (1975) may be more than a trivial coincidence.

This duality of classification has been recognized in biology (‘Philosophers as well as taxonomists
have realized almost from the beginning that classifications serve a dual purpose, a practical and
a general (that is, scientific or metaphysical) one.’ Mayr 1982:148) yet the two meanings continue
to be mixed up in debates over classificatory procedure.

The first concept of classification, which can be called hermeneutic because it generally involves an
interpretive (as opposed to analytic or explicitly algorithmic) procedure, clearly underlies abstract
thought, language, and in fact, learned behavior in general. For instance, a dog can only be
taught to sit on command if he is capable of grouping together the sounds that the command ‘sit’
produces when articulated by different people at different times. Empirically we seem to find that
the variation in sound between different articulations of ‘sit’ is small enough that it is generally
resolvable from the similar cluster of sounds produced by articulations of the word ‘come’. So an
average dog can correctly cluster variations on /sIt/ with respect to /k2m/ but would probably not
distinguish /sIt/ from /SIt/, which the average English-speaking human generally does.

The use of a linguistic example for illustration is not arbitrary: linguistics is a field in which the
duality of classification has been discussed in some detail. The terms phonetic and phonemic refer
respectively to the sounds that it is possible to make verbally (and distinguish aurally) and to the
sounds that convey differences of meaning in a particular language. For instance, the difference
between the International Phonetic Alphabet sounds /y/ and /u/ is non-phonemic in English: that
is, we would not distinguish between the word ‘food’ pronounced as /fud/ (the standard English
pronunciation) and /fyd/ (with the vowel brought from the back of the mouth to the front but still
rounded and closed). In French, on the other hand, this distinction produces the distinct words
vu=seen and vous=you. By analogy with this distinction, Pike (1967) coined the terms etic and
emic for attributes that are respectively extrinsic (objective) and intrinsic (subjective) to a society.
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An etic classification is objective in the sense that it comes from outside the context in which it
is used while an emic classification is context-dependent. It is reasonable to equate hermeneutic
classification at least roughly with Pike’s version of emic classification.

In comparison to this hermeneutic concept, there is the idea of set-theoretic classification which
developed along with axiomatic logic and set theory from the time of Peano (1922), who introduced
the symbol ∈ to indicate set membership in his axiomatization of set theory. Under this etic concept
of classification, a classification is a formal process of assigning elements to sets (or classes) under
the restriction that:

∀A,B : A ∈ B ∨A 6∈ B,

i.e. for all As and Bs, the entity A is either a member of a class B or it is not a member of the
class B. This is logically equivalent to the statement that the entity A has the property B or does
not have the property B, and under classical logic is assumed to be analytically true. (Despite
the developments in axiomatic set theory between Frege (1893) and Cohen (REF), some concept
of set membership is basic to all forms of set theory. As Zermelo stated it in 1906 (translated in
Moore 1982:156), ‘The property that an object a is an “element” of a set M is treated as a primary
fundamental relation.’)

We see, however, from the history of usage in the Oxford English Dictionary, that the word classi-
fication appeared at the very end of the 18th Century along with high enlightenment thought, and
considerably before set theory:

1. The action of classifying or arranging in classes, according to common character-
istics or affinities; assignment to the proper class. 1790 BURKE Fr. Rev. Wks. V. 332
Montesquieu observed very justly, that in their classification of the citizens the great
legislators of antiquity made the greatest display of their powers. 1804 ABERNETHY
Surg. Observ. 18 In attempting a classification of tumours. 1847 CARPENTER Zool.
2 The object of all Classification..[is] to bring together those beings which most resem-
ble each other and to separate those that differ. 1874 BLACKIE Self Cult. 19 Nothing
helps the memory so much as order and classification. 2. The result of classifying; a
systematic distribution, allocation, or arrangement, in a class or classes; esp. of things
which form the subject-matter of a science or of a methodic inquiry. 1794 SULLIVAN
View Nat. II. 196 De Saussure gives us this brief classification of volcanic substances.
1834 J. M. GOOD Study of Med. (4th ed.) I p.x, A syllabus of its classification for the
purpose of lecturing from. 1856 SIR B. BRODIE Psychol. Inq. I. vi. 230 The classifi-
cation of faculties which these writers have made is altogether artificial. 1860 MAURY
Phys. Geog. Sea. xi. 505 Red fogs..do not properly come under our classification of
sea fogs. Mod. Several classifications have been made.

It seems somewhat strange that this precise set-theoretic notion of classification has come to be
the dominant one in biology but this is clearly the case: an organism either is or is not a member
of a species; there is generally considered to be no middle ground. The assumptions of naive set
theory, of course lead to a number of contradictions (like Russell’s Paradox), so biologists have been
concerned with avoiding these by separating individuals (elements) from sets (classes):
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‘When rigid criteria for the limits of taxa are established, it is an easy thing to lose
sight of the fact that organisms, as evolving entities, should not be regarded as fixed
individuals.’ (Delevoryas 1964:35)

‘A species, indeed, is always a particular (individual), never a class.’ (Mayr 1995)

As can be seen from these quotations, however, there has been little consensus in biology about
what is really being classified, not to mention how the classification should be carried out.

At any empirical level, also, it remains far from universally evident what is meant by a set, still
less that set membership is necessarily bivalent (taking only two values). Most current variant
axiomatizations of set theory (von Neumann-Bernays-Gdel, Zermelo-Frankel, New Foundations,
etc.) while avoiding formal paradoxes, nevertheless restrict themselves an empirically (psycholog-
ically) vague notion of what a set is and to bivalent notions of set membership. Assuming that
∀A,B : A ∈ B ∨A 6∈ B is analytically true is very convenient as a method of constructing numbers
and arithmetic from primitive (‘self-evident’) logical assumptions, but it unfortunately seems less
effective when used as tool for describing empirical data from the natural world, much less when
used to describe such data filtered through the observational biases of human observers. For in-
stance, for the set of all red things R and the set of all maroon things M, it is not at all clear that M
is a subset of R or that is is not a subset of R. This sort of difficulty is studied as the phenomenon
of ‘vagueness’ in philosophy (Raffman 1994) and is not resolved by description of ‘red’ light as a
band of wave-lengths on the electromagnetic spectrum.

A A

Is the circle labled A one of the red ones?

It is possible that our mental predisposition in favor of dichotomies is to blame, as some biologists
have argued: ‘Our cultural bias to categoized things discretely, to fit even continua into pigeonholes,
is at fault. This bias extends even into mathematics and is why ordinary set theory is partly
inappropriate for biological systematics’ (Van Valen 1988:55). But it seems more likely that this
insistence is a result of the inheritance of the set-theoretic notion of classification from logic and
mathematics. Clearly our mental propensity is to classify things hemeneutically and be quite
comfortable with the idea that maroon is red compared to green but maroon compared with cherry-
red, apple-red, and candy-red.

One solution is the adoption of fuzzy set theory, generally attributed to Zadeh (1965) though a
biologist has also laid claim to the idea: ‘In 1964 I proposed what were soon aptly renamed fuzzy
sets’ (Van Valen 1988:56). Fuzzy sets, where set membership is described by a probability has
already been shown to have some application in clustering applications (REFS), and their realm
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of applicability may continue to grow. Neverthless, the basic incompatibility may remain between
set-theoretic classification as a precisely defined axiomatic property in a formal system, and any
practical notion of classification of emiprical data.

The problem seems to be that almost all explicit classifications we use are perceived to be set-
theoretic in nature and therefore are only strictly relevant to abstract sets. It may therefore be
unreasonable of us to be surprised when we find they in fact bear only an analogical relationship
to the empirical data from which they are constructed. Actually, there is an analytic method
for producing hermeneutic classifications: Pavlovian conditioning. By applying the appropriate
stimuli to subjects like dogs or graduate students, it is clearly possible to produce a belief in the
relationships between otherwise unrelated phenomena.

Classification in the biological and geological sciences

Until the advent of algorithmic classification, this was in fact the dominant procedure. For a
student learning to identify or classify any sort of objects from the natural worldand many man-
made artifacts, for that matterthere is a common progression. In the beginning, all the objects
look the same. Then one slowly learns to recognize a few of the most common kinds and may,
as each new type is recognized, for a time identify most things as that newly-recognized type.
As the number of recognizable types increases, the student begins to have an opinion about the
parameters of the various types, how clear-cut the lines are that divide them from each other,
and with what degree of reliability each can be recognized. This learning process, some variant of
which has surely been experienced by anyone who has dealt with large numbers of similar objects
whether they are sports cars, fossil brachiopods, or impressionist paintings, is usually mediated by
a teacher or teachers; learning to identify objects is more a skill to be learned than a concept to
be understood, and as such is is better taught through personal instruction than through books or
articles. Thus, in a scientific field like systematic biology where identification of objects has been
central in both practice and principle, there is at some level a reliance on expert opinion. Until
relatively recently there was little criticism of this procedure of passing down expert knowledge from
teacher to student and in any generation allowing seniority to set the standards for identification
and classification of organisms. But around the middle of the twentieth century, serious questions
began to arise about the logical validity of such a procedure: if an expert and a neophyte look at the
same material and produce different classifications, is the expert right and the neophyte wrong, or
has the expert merely disgorged established dogma while the neophyte takes a fresh, unbiased look
at the material? Furthermore, no two experts will entirely agree on a classification and consensus
carries the same disadvantages as reliance on received wisdom.

Between 1950 and about 1970, two schools of thought in systematic biology, phenetics and cladis-
tics, arose to address this issue in classification of biological organisms. Both these schools aimed
to design objective and biologically meaningful ways of classifying organisms or, alternatively, to
invent a procedure for approximating or estimating the true natural relationships among organ-
isms. (These two alternative formulations are functionally equivalent but the former assumes that
classifications are inherently artificial, human creations while the latter presupposes that there ex-
ists a true natural system of relationships to discover. Both phrasings are met in the systematic
literature.) In addition to sharing an ultimate goal, both schools of thought relied on numerical
or computational methods (algorithms) to provide apparent objectivity and took full advantage of
the electronic computer as it became available.
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The primary difference between these schools actually predated their establishment; that is, the
two schools arose independently rather than one in reaction to the other. Phenetics drew heavily
on a French or Anglo-French tradition typified by the work of the French botanist Adanson (see
Jardine and Sibson 1971:137 for a brief bibliographic history of the antecedents to phenetics) while
cladistics came out of the German system of which Haeckel is the most prominant representative
and essentially began with the work of Hennig (initially published in 1950; translated into English
in 1966, at which time its influence began to be felt). Here, we will distinguish the Adansonian
perspective, implying merely an absence of a priori assumptions about whether organisms form a
tree, from phenetics, which espoused the Adansonian perspective, but really describes the program
of numerical classification on Adansonian principles that was started by Sokal and Sneath (1963)
and explicitly renounces a priori weighting of the characteristics used to classify organisms. It has
frequently been said that phenetics classifies organisms based on their ‘degree of overall similarity.
We will also distinguish the Haeckelian view, which merely presupposes a single, strictly dendritic
tree of life, from cladistics which is a program of classification in general agreeing with Haeckels a
priori belief in a dendritic tree of life but primarily based on Hennigs reccomendations for estimating
phylogeny based on synapomorphy and subsequent rules for applying names to the estimated
phylogeny. A slight element of confusion is produced by the group of cladists called ‘pattern (or
‘transformed or ‘methodological ) cladists who have rejected the Haeckelian a priori belief in a
dendritic structure but are willing to retain the methods that cladists use to reconstruct a tree of
life and name its branches.

The main argument in support of an Adansonian approach is that it has fewer untestable assump-
tions (i.e. it does not assume a dendritic structure in the history of life) while this has also been
urged as a criticism: that since most scientists believe in descent from a single origin of life, a
method of classification that does not take this as a premise is less likely to be biologically mean-
ingful. The same criteria have been used to evaluate the Haeckelian perspective and the cladistic
methods derived from it: on one hand that they have more assumptions than strictly necessary in
a classificatory system, and on the other hand, assuming a dendritic structure is reasonable insofar
as we also assume that Darwinian evolution takes place.

Through the 1980s there was an active debate between the pheneticists and the cladists (REFS)
with the sometimes inflamatory, sometimes palliative influence of a third school, the evolutionary
taxonomists (also called Mayrian, Simpsonian, synthetic, syncretistic, gradistic and eclectic tax-
onomist) who believed that taxonomy had to be a compromise between an evolutionary system
and one that considered overall similarity as well as descent.

The triangular controversy between cladists, pheneticists, and evolutionary taxonomists essentially
ended with cladistics acquiring a definitive preeminence over the two competing schools of thought;
since 1990, the evolutionary taxonomists have largely been branded as old-fashioned or reactionary
while the pheneticists are usually dismissed as incorrect when their point of view is considered at
all. Phenetics (the algorithmic classification of objects with no a priori weighting of the importance
of their characteristics) was hardly ever used for the routine classification of biological organisms
and now seems only to be studied in statistics departments where it is of interest per se as an
application of clustering algorithms (Hartigan 1975).

There are a number of possible explanations for the success of cladistics: first of all its supporters
may be correct in arguing that a true, strictly branching tree of life exists, that cladistic methods
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of phylogenetic reconstruction offer the best available way of finding progressively better approx-
imations to it, and that biological nomenclature should have a one-to-one correspondence with
the best available approximation to the true phylogenetic tree. Second, the historically contingent
association between molecular sequence data and cladistics may have contributed to the domi-
nance of cladistics. In other words, the early molecular systematists may have had a cladistic
or Haekelian perspective so when they began to construct cladograms from molecular data they
continued to think of themselves as cladists even though maximum likelihood algorithms for phy-
logeny estimation from sequence data seem to occupy a fuzzy ground between phenetic and cladistic
methodologies. Finally, the dominance of cladistics in systematic biology may be due to its better
concordance with prior views independently of its real success as a tool for classification and tax-
onomy. A corollary to this possibility is that it is not inherently in concordance with prior dogma,
but is merely easier to manipulate and therefore can be easily, perhaps unconsciously, forced to
give acceptible views. Whatever the reason for the current dominance of cladistics, its agenda is
stated very clearly: it will provide rules for the express purpose of naming the parts of the tree of
lifeboth species and cladesby explicit reference to phylogeny. (Cantino and de Queiroz 2000:2)

From before Darwin to the present, the implicit assumption has underlain most practical taxonomy
that, ‘all organic beings are found to resemble each other in descending degrees, so that they can
be classed in groups under groups. This classification is evidently not arbitrary like the groupings
of the stars and constellations.’ (Darwin 1859:411)

In biology, much of the debate over classification has focussed on the adjectives ‘natural’ and ‘arti-
ficial’: a ‘natural’ classification is one that is perceived to be objectively present among organisms,
regardless of whether or not and by whom they are classified; an ‘artificial’ classification is imposed
by the subjective, question-driven intent of a particular systematist.

But how does this natural-arbitrary distinction related to the heuristic-set-theoretic duality dis-
cussed above? In fact the categories are reversed: a natural group is determined hermeneutically
and is therefore emic and in reality subjective while an artificial group is set-theoretically defined,
and therefore etic and objective.

‘There are two kinds of classification systems, one reflecting properties of the classifier alone (the
subject), or artificial systems, the other mirroring relations having real existence in nature (the
object), or natural systems. (Note that “objective reality” and “objective classification” do not
refer to the opinions of classifiers who are sincere or consistent; “objective” and “subjective” have,
again, both logical and psychological meanings.) (Ghiselin 1966a:212)

Again linguistics provide a useful example: a real language (like English) is defined by the phonemes—
subjectively recognized characteristics—that compose it, while the International Phonetic Alphabet
is an entirely artificial compilation of sounds that appear phonemically in different languages.

In set-theoretic terms, there is no difference in degree of arbitrariness between constellations of stars
and species of mammal; it is just that our Copernican view of the stars makes it vividly apparent
how alternative perspectives can make the constellations as seen from the earth seem merely a
particular point of view, while we are less practiced in imagining alternative ways of classifying
mammals. A heuristic classification of mammals sees ‘tigers’ as an important thing to name and
‘striped animals’ as unimportant, but in set-theoretic terms the two classes are equally abstract.
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This leads us towards the conclusion that biological classification should be governed by the prag-
matic concerns of data analysis, rather than by some notion of discovering ‘natural groups’. A
salutary example is provided by geology, a field that also must classify natural (empirical) data,
but which has shown little angst about arbitrary classifications and no debate over classificatory
methodology.

This can be illustrated by examination of a typical geological problem, the classification of sand-
stones, in which arbitrary delimitation is not seen as a defect. There are three alternative classifi-
cations of sandstones given in a standard textbook on sedimentology (Boggs, 1995). All three focus
on the relative proportions of quartz, feldspar, and rock fragments that make up the grains of the
sandstone, and all three restrict the category ‘quartz arenite’ to a very restricted area (though this
area is differently shaped in each system). The lines separating the categories are clearly arbitrary
in the sense that 5% is not markedly better than 6%, but no geologist would consider rejecting
such a classification because of the way real sandstones were distributed on the triangle.

This is equivalent to there being three definitions of the genus Homo, one as ‘the set of all featherless
bipeds’, another as ‘the set of all organisms more closely genetically related to Joe Dimaggio than
to any living chimpanzee’, and a third as ’the set of all humans’. All of these refer to more-or-less
the same group of empirical phenomena (us) and in many cases none has any advantage over the
others. Few biologists, however, would be ambivalent about which of these to use.

Why are biologists so concerned that their classifications reflect ‘real’ boundaries in nature? This
is not a universal preoccupation:

‘It has often been said, particularly by those biologists who consider the species to
represent a more natural level of integration than other taxa...that phena delimited by
taxometric methods are arbitrary. This criticism becomes less serious if it be accepted
that the concept of biological species is a model which is actually realized in nature only
rarely.’ (Silvestri and Hill 1964:96)

So, when species are looked at closely, they almost never look anything but arbitrary. In the way
that statisticians conventionally assume that variables are independent even though they almost
never are, biologists assume that species are real even though they are in practice abstract set-
theoretic approximations of biological clusters or patterns that happen to be interesting.
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The minority of biologists who support this practical view admit that:

‘Classification...was aptly described...as a concise key to a great deal of information
of a rather varied nature specifically pertaining to a group of associated organisms (a
taxonomic group or taxon), the link between the taxonomic assembly and the stored
information being formed by a code word,...the scientific name....If one agrees with this,
the practical value of a classification is...manifest. Nevertheless, many workers are ap-
parently reluctant to admit that it is exactly this useful aspect of classification which
often decides the methods and the criteria to be employed in arriving at a classifi-
cation....Practical reasons tend to overrule alternative considerations (such as a more
“scientific” approach to classification, whatever that is).’ Meeuse 1964:115f

And yet the dominant view remains focussed on ‘natural’ and primarily ‘natural because phyloge-
netic’ classifications:

‘If a system is not phylogenetic, it really cannot be judged “better” or “worse” than
another that is not. It is really pointless to argue about the relative merits of various
artificial schemes.’ (Delevoryas 1964:30)

In some ways, the current state of biological classification has been determined more by the eco-
nomics and institutional structure of the academic world than by any logical or scientific concern.
Support for the development of genetic technology (from the agricultural and pharmaceutical in-
dustries) has led to the extraordinary flourishing of departments of molecular biology with respect
to the organismal and evolutionary branches of the field. Genetic data is new; genetic data is hot;
running a laboratory that produces genetic data guarantees a certain level of funding in academia.
Genetic data is not necessarily the way everyone should be classifying organisms and the methods
developed for handling genetic sequences (as with many highly specific, technical methods) tend to
obscure the problems with using them to reconstruct phylogeny, not to mention the problems with
classifying things based exclusively on their genetic relatedness.

So a preoccupation with genetic data and the confused logic that measures the quality of a biological
classification scheme by whether it reflects ‘natural’ groups (which are actually emic, subjective
groups, as discussed above) has led to a dogmatic approach, which equates biological classification
with measurement of genetic distance to the exclusion of real issues of practical classification of
different types of empirical data.

Classification as applied data analysis

When discussing classification as a branch of applied data analysis, the question of whether the
groups being produced are ‘real’ seldom appears, though some similar issues have been discussed:
‘All clustering algorithms will, when presented with data, produce clusters—regardless of whether
the data contain clusters or not....Data which do not contain clusters should not be processed by a
clustering algorithm’ (Jain et al. 1999:267). This concern has led to the the production of stopping
rules for hierarchical algorithms and various coefficients that measure the degree of clustering found
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in a data set. In addition, practical application of classificatory algorithms has its own issues, of
which three in particular have received particular attention.

Distribution mixtures

In a univariate case, classification is simplified to the question of clustering: in the distribution
of data along a single axis of variation uniform, or is the data arranged in clusters? This is the
question of discriminating mixtures of different distributions, which has received a fair amount of
attention in statistics.

If the forms of the mixed distributions are known with some degree of precision, very precise tools
can be designed to discriminate them. A good example of this are the Rayleigh criterion and
Sparrow limit, which are used by astronomers to decide whether to recognize as separate closely
spaced point light sources at long distances.

Since the diffraction pattern (Fraunhofer pattern) due to a single slit has a well known functional
form,

y = (i ∗ ((sin(pi ∗ a ∗ (x/sqrt(x2 + b2))/l))/(pi ∗ a ∗ (x/sqrt(x2 + b2))/l))2,

where a is the width of the slit, b is the distance of screen from slit, i is the maximum light intensity,
and l is the wavelength of the light.

it is possible to propose a precise criterion for acceptance of polymodality; there are two that have
been suggested, the first due to Rayleigh (REF), who argued that point sources were resolvable
when the maximum of one was lined up with the first minimum of another. This is equivalent to a
26.5% dip in brightness between the sources in the two-dimensional case (point sources); the dip in
the case of a one dimensional case (slit experiment) is slightly different. A less conservative version
of this was proposed by Sparrow (1916), who proposed that any dip in intensity was enough to
discriminate sources of known frequency (modulation transfer function = 0).

Similar criteria have been proposed for mixtures of Gaussian distributions as well as for other
functional forms (Hartigan 1985), but their practical application is limited by the accuracy with
which distributional forms are known. Even in so simple a case as measurement with a ruler, the
total measurement error will in fact be the sums of the measurement errors associated with aligning
the tick marks at each end. These are usually assumed to be equal, uncorrelated, and equivalent
in sum to about half to one tick on the ruler, but in practice they are liable to be different (as, for
instance, is the case when using a tape measure where the near end can be read carefully but the
far end is out of reach and cannot be hooked over a convenient corner.

In fact one should also add in other errors like the error of reading ticks incorrectly or adding or
dropping a whole number of units. The problem with dealing with this component of the error
equasion is that such errors have no convenient functional form, so they are conventionally assumed
to be zero....Note the though they are conventionally assumed to be zero, it is not true that they
are usually assumed to be zero; misreading or typing error are usually the first things checked when
unexpected results appear.

Orthogonality
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When multiple variables are considered, as in most actual classifications, there is the added issue of
orthogonality: for each variable there it the question of whether the data is clustered with respect
to it, and then there is the question of whether enough of the (relevant) variables show clusters,
and if so whether the clusters that they show are the same.
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For instance, here is a (complete linkage, agglomerative) hierarchical cluster plot and a pairs plot of
a set of thirty points in three well-separated tri-variate-normal spherical clusters. The presence of
these three clusters is obvious, but a careless examination of these plots would also seem to suggest
that two of the clusters are more similar to each other than either is to the third cluster.
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Even in this trivial case, it requires a rotation of the axes via eigenvector extraction to show that
the clusters are in fact equally spaced in three dimensions:
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The great variety of eigenvector methods remain essentially graphical devices (like pairs plots) for
plotting more than two variables on a flat surface; there is no reason to expect that the linear
combination of variables with the largest variance (the first principle component) is more likely
than any other combination of variables to show clustering.

The closest thing to an algorithmic procedure that will actually evaluate the presence of clusters
in many dimensions is a partitioning algorithm like k-means clustering or a hierarchical clustering
algorithm with a stopping rule. Both can be used to illustrate clusters that are known to be present
and they can provide some guidance about how many clusters are present in data known to be clus-
tered (as illustrated by the figure below in which the presence of exactly three clusters is recovered
from the synthetic data by minimizing the average total sum-of-squares distances between points),
but neither indicates whether some variables are better than others for classificatory purposes.
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The practice of variable shopping is common in all branches of applied statistics, and applies to
clustering in much the same way that it applies in multiple regression. Because a variable can
always be found to induce a particular clustering, the temptation is great to choose data that
provide unambiguous answers instead of data that are conceptually related to the question of
interest.

Scale

Finally, in addition to the issue of separating mixtures of similar distribution (discrimination) and
reconciling orthogonal measurements, there is the practical issue of dealing with large amounts of
data.

Classification of tens or even hundreds of points with two or three continuous variables is so trivial
that there would never have arisen a need for algorithmic clustering methods. There are almost two
million described biological species, however, and if the clustering of organisms into species is also
considered a matter of interest, then the number of points to be classified by systematic biologists
becomes in practical terms uncountable.

‘In Solanum there are at least 1000 species and no one knows how to break them up
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into major groups. This is a case where the use of the computer would be of extreme
value. I am quite certain that there must be many such groups in which we cannot
produce any good system by our present methods simply because of the limitations of
the mind in holding more than a certain number of characters at the same time.’ Stearn
in Heywood and McNeill, eds. 1964:162

These are the situations in which a discussion of the methodology of classification becomes partic-
ularly interesting. How robust are different algorithms in the face of different kinds of noise? Since
complete sampling is generally impossible and there are seldom even vague a priori assumptions
about the hyperdimensional distribution of the data, how can classifications be produced based on
irregular and scarce sampling?

In biology, attempts to deal with these questions have generally taken second place to extremely
technical and elaborate discussions of optimal methods of dealing with relatively small sets of
particular types of data (like genetic sequence data or morphological character codes) with no ex-
amination of when or whether such methods are applicable to orders of magnitude more data. The
efficacy of graphical tools has been grossly underrated (Chernoff 1973, Tufte 2001, Basford and
Tukey 1999), and the quest for resolution of dendritic structure as far as possible has helped mini-
mize the importance of error analyses. It is often more important to determine when classification
is meaningless than to show how a procedure can be developed to classify every point exactly with
respect to every other point however lacking in content such a procedure may be.

Conclusions

In The Merchant of Venice Bassanio and the Princes of Morocco and Arragon have the task of
classifying three caskets of different materials (gold, silver, and lead) into two groups (the group
that leads to marriage with Portia and the group that leads to rejection). To all three suitors are
available the same apparent empirical data (the materials of and inscriptions on the caskets). The
actual empirical contents of the caskets (two mocking doggerel verses and one portrait of Portia) are
hidden. Had the contents of the caskets been known, naturally all three suitors would have made
the same classification because their ultimate aims, marriage with Portia, are identical. Because
of differences in the classifiers, however, the conclusions that are drawn from the same apparent
empirical data are different. The situation of empirical scientists applying classification procedures
to real objects and organisms is similar to the situation in which Portia’s suitors are put: they
agree on overall theoretical goals, but not on the way in which the available empirical data is likely
to relate to the overall goal. Therefore their choices of classification are likely to reveal more about
their own biases and preoccupations than they are about patterns in the data. Thus the areas in
which classification has been a methodological issue are those fields in which there has been most
doubt about the sort of empirical data that should be considered relevant for any given question.
In the classification of sandstones, the variables of interest have remained clear and constant over
the past century; in the classification of organisms, the purposes for classification have changed
radically over the same time period.

Therefore the advantage provided by numerical or algorithmic methods over raw human prejudice
is sometimes equivocal:
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‘The “numerical” approach may produce a useful classification where other methods
have failed; but I honestly believe that on the whole its merits are highly overrated, its
objectivity is based on feelings of false security, and its results are not “better” nor more
reliable and certainly not preferable to those of conventional methods of classification
based on a well-considered judgment.’ Meeuse 1964:120

So some biologists have rejected a ‘numerical’ (algorithmic) approach because it seems to make
false (or at least problematical) claims to objectivity rather than because it lacks useful practical
functionality. Almost certainly in the case of dealing with very large data sets, probably in the case
of synthesizing orthogonal variables, and maybe in the case of distinguishing mixtures, algorithmic
methods have obvious practical advantages. The focus on metaphysical validity over practical
utility has preoccupied biologists, narrowed the range of questions for which useful classifications
can and should be designed to essentially a single axis of variation (genetic dissimilarity) and
deflected attention from the practical differences between comparable algorithms.

Decisions about classification techniques should begin with a choice about the purpose or purposes
to which the classification will be put, and end with and evaluation of how well it serves those ends.

‘When objective facts have been examined and we are still disagreeing, there has been
a tendency to say....“the decision is then arbitrary” or “it is purely subjective”....In fact
what has also been emerging...is that when we are in doubt about our classifications we
want to ask what the purpose of our classification is.’ Crawshay-Williams in Heywood
and McNeill, eds. 1964:163

This can also be illustrated with the three-object problem: for three items A, B, and C, there are
three possible (non-trivial) classifications:

A(BC), (AB)C, and (AC)B, where (ABC) and (A)(B)(C) are trivial

If for example A = 3 apples, B = 2 oranges and C = 3 oranges, or A is a blue circle, B is a blue
triangle, and C is a white triangle, it is clear, as in the three-object problem discussed above, that
there is no algorithmic way to organize the objects. Classification is clearly possible, but it explicitly
requires a choice about whether to privilege colour, shape, number, or some other variable.
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In the case of sandstones, geologists seem to have no difficulty identifying interesting axes of vari-
ation and then designing classifications—sometimes several different classifications—for given pur-
poses. When faced with evolving biological organisms, biologists seem to have lost the pragmatics
of classification in a morass of hazy epistemology and miss-applied set theory.
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Appendix

Numerical Tools

Summary of methods hermeneutic unsupervised algorithmic classification (cluster analysis sensu
strictu) hierarchical cluster analysis divisive agglomerative using single linkage distance metric
(nearest neighbor) using average linkage distance metric using complete linkage distance metric
(farthest neighbor) partitioning hierarchical plus stopping rule k-means liable to be trapped on
local min. of squared distances topological minimum spanning tree (MST) closely related to hierar-
chical methods Delaunay graph relative neighborhood graph (RNG) fuzzy clustering fuzzy c-means
(FCM) monothetic clustering supervised algorithmic classification (computer learning) descrimi-
nant analysis neural nets (parallel distributed processing, connectionist techniques) require quant.
data, number of ouput nodes limited (fixed number of output clusters) self organizing map (SOM)
sensitive to initial weights, balls only learning vector quantization (LVQ) Kohonen 1984 similar
to k-means adaptive resonance theory (ART) (Carpenter and Grossberg 1990) order dependent,
balls only feed forward feed backward rule based (expert systems) searches evolutionary algorithms
sensitive to control parameters genetic algorithms (GA) evolutionary strategies (ES) evolutionary
programming (EP) simulated annealing (SA) branch and bound tabu search glover 1986 al-sultan
1995
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Hierarchical methods generally more versatile but more memory/computation-intensive than par-
titioning. Jain 1999:277

Distance metrics single euclidean root sum of squared distances manhattan sum of absolute dis-
tances minkowsky generalized pth root of sum of distances to the power p canberra sum(—x i - y i—
/ —x i + y i—) Terms with zero numerator and denominator are omitted from the sum and treated
as if the values were missing. canberra d[jk] = (1/NZ) sum ((x[ij]-x[ik])/(x[ij]+x[ik])) where NZ is
the number of non-zero entries. symmetric binary Mahalonobis d(xi, xj) = (xi−xj)S−1(xi−xj)T ,
where S is the covariance matrix of the x’s assumes unimodality; multidimensional normality Haus-
dorff asymmetric binary The vectors are regarded as binary bits, so non-zero elements are ‘on’ and
zero elements are ‘off’. The distance is the proportion of bits in which only one is on amongst those
in which at least one is on.

gower d[jk] = sum (abs(x[ij]-x[ik])/(max(x[i])-min(x[i])) bray d[jk] = (sum abs(x[ij]-x[ik])/(sum
(x[ij]+x[ik])) kulczynski d[jk] 1 - 0.5*((sum min(x[ij],x[ik])/(sum x[ij]) + (sum min(x[ij],x[ik])/(sum
x[ik])) morisita d[jk] = 2*sum(x[ij]*x[ik])/((lambda[j]+lambda[k]) * sum(x[ij])*sum(x[ik])) where
lambda[j] = sum(x[ij]*(x[ij]-1))/sum(x[ij])*sum(x[ij] -1) Morisita index can be used with genuine
count data only. horn Like ‘morisita’, but lambda[j] = sum(x[ij]2)/(sum(x[ij])2) Horn-Morisita
variant is able to handle any abundance data. Jaccard index is computed as 2B/(1+B), where
B is Bray-Curtis dissimilarity. Mountford index is defined as M = 1/alpha where alpha is the
parameter of Fisher’s logseries assuming that the compared communities are samples from the same
community (cf. ‘fisherfit’, ‘fisher.alpha’). The index M is found as the positive root of equation
exp(a*M) + exp(b*M) = 1 + exp((a+b-j)*M), where j is the number of species occurring in both
communities, and a and b are the number of species in each separate community (so the index uses
presence-absence information). Mountford index is usually misrepresented in the literature: indeed
Mountford (1962) suggested an approximation to be used as starting value in iterations, but the
proper index is defined as the root of the equation above. The function ‘vegdist’ solves M with the
Newton method. Please note that if either a or b are equal to j, one of the communities could be
a subset of other, and the dissimilarity is 0 meaning that non-identical objects may be regarded
as similar and the index is non-metric. The Mountford index is in the range 0 ... log(2), but the
dissimilarities are divided by log(2) so that the results will be in the conventional range 0 ... 1.

mutual neighbor distance (MND) d(xi, xj) = NN(xi, xj) + NN(xj, xi) where NN (a, b) is the rank
of b in the ordered list of neighbors of a Gawda and Krishna (1977) in Jain et all 1999:273 NON
METRIC (does not satisfy triangle inequality) conceptual clustering d(xi, xj) = f(xi, xj, C, K)
Michalski and Stepp 1983 in Jain 1999 273 NON METRIC (does not satisfy triangle inequality)

group complete linkage (farthest neighbor) Maximum distance between two components of x and
y (supremum norm) compact clusters average linkage single linkage (nearest neighbor) suffers from
chaining; can extract concentric clusters minimum variance =? ward’s method, Ward(1963) J. Am.
Stat. Assoc. 58:236 ward’s method mcquitty median centroid minimal spanning tree

Similarity measures Bray-Curtis

Synthetic data binary factorial ordered unordered hierarchical continuous

Graphical Tools graphical techniques direct matrix operations Braun-Blanquet profile analysis
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Basford and Tukey (1999) Hartigan(1967) scatter plot lattice matrices glyph analysis Chernoff
faces trees and castles heatmaps eigenvector methods principal components analysis (PCA) Factor
analysis Gradient analysis (direct, indirect) Multidimentsional scaling (MDS) (Detrended) Corre-
spondence analyisis (DCA) Canonical Correspondence analysis (CCA)
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