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   1  Eighteenth century beginnings and the method of averages  



 
   Linear models are used to predict a variable as a linear function of 
other variables. We need to know how to select the linear function and 
how reliable the prediction is. 
 
  In the 18th century, the availability of accurate telescopes led to a great 
growth in astronomy, and much of the early work in linear models arose 
from the need to combine discrepant astronomical observations of a celestial 
object at different times and by different observers.  Plackett(1958) found 
no evidence of the use of the arithmetic mean in the work of the ancient 
Babylonian and Greek astronomers. Perhaps the first formal consideration of 
the combination of observations is due to  Galileo (1632), who considers 
the question of combining the observations of 13 observers of the elevations 
of a star in order to determine the distance of the star from the earth. 
 
  Mayer(1750) developed the Method of Averages for fitting a linear 
equation to observed data: 

  
 
 
From Stigler's description: 
 



Mayer's method for the resolution of inconsistent observational equa:ions can be 
discerned in his discussion of the position of the crater Manilius. Figure 1.2 represents 
the moon, which Mayer considered as a sphere. The great circle QNL represents the 
moon's true equator, and P is the moon's pole with respect to this equator, one end of its 
axis of revolution. The great circle DNB is that circumference (or apparent equator) of 
the moon that is seen from earth as parallel to the plane of the ecliptic, the plane of the 
earth's orbit about the sun, and A is the pole of the moon with respect to DNB, its 
apparent pole as viewed by an earthbound astronomer oriented by the ecliptic. The point 
γ (the point on the circle DNB in the direction from the moon's center C toward the 
equinox) was taken as a reference point. The circle DNB and the pole A will vary with 
time, as a result of the libration of the moon, but they form the natural system of 
coordinates at a given time. The equator QNL and the pole P are fixed but not observable 
from earth. Mayer's aim was to determine the relationship between these coordinate 
systems and thus accurately determine QNL and P. He accomplished this by making 
repeated observations of the crater Manilius. Now, in Figure 1.2, M is the position of 
Manilius, and PL and AB are meridian quadrants through M with respect to the two 
polar coordinate systems. Mayer was able to observe the position of M on several 
occasions with respect to the constantly changing coordinate system determined by DNB 
and A; that is, subject to observational error he could at a given time measure the arcs 
AM = h and γB = g. 
To determine the relationship between the coordinate systems, Mayer sought to find the 
fixed, but unknown, arc length AP = α, the true latitude of Manilius β = ML, and the 
distance θ between the unknown node or point of intersection of the two circles (N) and 
the known point of intersection  of the plane of the orbit of the moon and the circle DNB.  
He let k = γ F be the observed longitude of F. Then g, h, and k were observable 
and varied from observation to observation as a result of the motion of the moon (and 
observational error); and α, θ and β were fixed and unknown, to be determined from the 
observations. Because N AP forms a right angle, a basic identity of spherical 
trigonometry implies that these quantities are related nonlinearly by the equation  
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These equations are linearized when β and h are small. Mayer 
observed Manilius on 27 days as the moon rotated. There is an equation for 
each observation. The equations are divided into three groups according as 
the coefficient of  α is close to 1,-1, or 0. 
 



 
Now, the coefficients for the 9 observations in each group are averaged to 
obtain just one equation for each group; three unknowns are now determined 
by solving the three equations: 
 

 



 
Mayer wrote  
 
 "These equations [Table 1.2] can take the place of the foregoing totality of equations 
[Table 1.1] because each of these three equations has been formed in the most 
advantageous manner (die vortheilhaftigsteArt). The advantage consists in the fact that 
through the above division into three classes, the differences between the three sums are 
made as large as is possible. The greater these differences are, the more accurately ( 
richtiger)one may determine the unknown values of  α, β, and θ."(Mayer, 1750, p. 154) 
 
 Boscovich(1757) is the first to propose fitting a straight line by 
requiring that the average residual be zero, and that the sum of absolute 
residuals be minimized subject to that constraint. 
 
 Lagrange(1774) determines the distribution of a mean when the 
individual errors have density 
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 Laplace(1774) suggests combining observations so that the estimated value 
has minimum expected deviation from the true value, and has equal 
probability of falling above and below the true value. He solves this problem 
when the individual errors have density |)|exp()( 2

1 xxf −=  which, oddly 
enough, is now called Laplace's density. 
 
 Bernoulli(1778) suggests using the method of maximum likelihood to 
determine the 'average' of a set of observations when the error density is 
semi-circular , }1|{|)1()( 2
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 Laplace(1786) fits a straight line by minimizing the maximum residual. 
 



2  Nineteenth Century Least Squares: Legendre 
  
     Legendre(1805) is the first to publish the method of Least squares, 
which determines the coefficients in a set of equations to make the sum of 
squared errors a minimum. 

 
From Stigler, 
Legendre used least squares to estimate the length of the metre, the new French basic 
unit of length, 1/10000000 times the length of the meridian arc through Paris. The 
French measured, with sophisticated geodetic survey methods, the lengths of four arcs 
between Dunkirk, Paris, Evaux, Carcassone, and Mountjoy ( near Barcelona). These arcs 
were expressed in terms of the length of the meridian arc ( a function of C)  and the 
ellipticity α  of the earth. Assuming that the latitudes of the 5 cities were determined with 
errors  EI, Legendre derived four equations: 
 
EI-EII         = 0.002923 + C(2.192) - α(0.563)  
EII I-EIII  =  0.003100 + C(2.672) - α(0.351)  
EIII-EIV   = -0.001096 + C(2.962) + α (0.047) 
EIV -EV    =  -.001808 + C(1.851) +  α (0.263) 
 
Legendre has five errors and four equations; he handled that problem by taking EIII  to be 
an unknown to be estimated. Thus he has four equations in three unknowns for his least 
squares problem; that was lucky, he still has 1 degree of freedom for error! 
The meter was determined  by Legendre to be 3.280 feet. The actual meter used was 
taken from Laplace, who used also an arc measured in Peru; it was 3.281 feet. 



3 Gauss connects the gaussian distribution with least squares 
  
  Gauss(1809) shows that the normal (or Gaussian) law of error is necessary 
if the arithmetic mean is to be the most probable value of an unknown 
quantity  based on several equally good observations, when the prior 
distribution of the unknown is uniform. The arithmetic mean is 'generally 
acknowledged' as an excellent way of combining observations, so the use of 
the normal error curve is justified. This is a first use of a normative Bayesian 
argument, saying that people must implicitly believe a certain distribution 
because they act in a certain way. 
 And then the method of least squares is a consequence of assuming 
Gaussian errors in fitting problems. Laplace (1810) argued that the normal 
error curve was justified by the Central Limit Theorem, in that each error 
was made up of the sum of a larger number of small errors. 
 
From Stigler, 
 
Or was it Legendre's prInciple( Gauss deeply affronted Legendre by referring to the 
method of least squares as "our principle" (Principium nostrum) and by claiming that he, 
Gauss, had been using the method since 1795. The ensuing priority dispute, and another 
one involving the law of quadratic reciprocity of number theory, exacerbated the 
relationship between the two men. The heat of the dispute never reached that of the 
Newton-Leibniz controversy, but it reached dramatic levels nevertheless. Legendre 
appended a semianonymous attack on Gauss to the 1820 version of his Nouvelles 
methodes pour la determination des orbites , and Gauss solicited reluctant testimony 
from friends that he told them of the method before 1805. Plackett ( 1972) reviews most 
of evidence. A recent study of this and further evidence (Stigler, 1981 ) suggests that, 
although Gauss may well have been telling the truth about his prior use of the method, he 
was unsuccessful in whatever attempts he made to communicate it before 1805. In 
addition, there is no indication that he saw its great general potential before he learned 
of Legendre's work. Legendre's 1805 appendix, on the other hand, although it fell far 
short of Gauss's work in development, was a dramatic and clear proclamation of a 
general method by a man who had no doubt about its importance. 
 
     Laplace(1810) shows that arithmetic means are asymptotically normal 
under general conditions, and that for normal error laws least squares, 
maximum likelihood, and his own 1774 criterion (requiring minimum 
expected absolute deviation from the true value, while having median at the 
true value) all produce the arithmetic mean. His great work on probability, 
Laplace(1812) contains this material and much more about least squares. 
 
 



   4 Early suggestions for modern methods 
 
  Gauss(1816) shows that estimating the residual variance by root mean 
squared deviations has superior asymptotic efficiency to using any other nth 
root of sums of nth powers. (The same accuracy is achieved with 114 
observations at n=1, 100 at n=2, 109 at n=3, 133 at n=4,178 at n=5, 251 at 
n=6, 249 if the median of absolute values of the errors is used.) 
 Quetelet(1846) suggests using the interquartile range, the difference 
between the two points that contain the middle 50% of the observations. 
 
      Fourier(1824) fits a linear equation to (1) minimize the maximum 
absolute deviation and (2) minimize the average absolute deviation. He sets 
the solution up to solve systems of inequalities, that is, in the form of a linear 
programming problem. The method is now called Fourier's method of 
descents. 
 
      Cauchy(1837) proposes a variable selection procedure in which 
variables are not included in the fitting process if they do not materially 
reduce the residual sum of squares. 
 
      Pierce(1852) proposes rejecting observations when the probability of 
all observations is less than the probability of observations retained 
multiplied by the probability of making the rejected set of observations. 
 
 Chauvenet(1863) proposes rejecting the observation X in n observations if 
we expect 0.5 out of n normal observations to be greater than X. 



 
5 Early Twentieth Century  
 
      Edgeworth (1885), the first modern author, compares the mean and the 
median, and the standard deviation and the interquartile range, deriving 
asymptotic distributions of these quantities.  Edgeworth(1887) proposes a 
method for minimizing average absolute deviations, in which medians are 
substituted for weighted averages in the calculations.   Rhodes (1930) gives 
a more detailed description of Edgeworth's method.  Harris ( 1950) relates 
the method to linear programming, and gives a clear explanation of it. See 
also  Wagner(1959) 
 
       Jackson (1924) shows that there is a unique solution to fitting 
linear equations minimizing the average pth power of error for every p >1. 
 
       Jeffreys(1932) handles outliers by allowing errors to be 
distributed as a mixture of normals, and provides a method of solution for 
determining the 5 parameters of the mixture. 
 
         Paulson(1940) finds the distribution of the median of a sample of 
size 2n+1 from an arbitrary distribution.  Wilson(1940) identifies cases 
where the usual asymptotic formula for the standard error of the median is 
incorrect. 
 
         Nair(1948) studies the distribution of the maximum deviation of 
observations from the arithmetic mean, and of the same quantity divided by 
the standard deviation, for the purpose of evaluating a criterion for rejection 
of outliers. 
 
         Tukey(1949) studies the behaviour of various estimators when 
samples are drawn from normal mixtures with the same mean. In particular 
he considers trimmed means, in which a fixed fraction of observations is 
dropped from either end of the sample. 
 
         Dixon(1960) studies Winsorized means, in which suspected outliers 
are replaced by the next largest order statistic,(or next smallest if the 
outlier is small), rather than being rejected entirely. 
 
          Ferguson(1961) considers locally optimal tests for identifying 
 outliers, and compares these procedures to previously described methods. 



 
          Tukey(1962) asserts that neither mean nor variance is likely to 
be a wise choice for making estimates from a large sample. He suggests 
trimmed or Winsorized means, truncated variances or mean deviations. 
 
          Huber(1964) shows that the minimax estimator when a normal error 
is contaminated by an arbitrary symmetrically distributed error is the 
maximum likelihood estimator for the Huber density 
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         The end of least squares! Stein(1956) showed that least squares was 
inadmissible for normal errors in more than 2 dimensions.. that is there are 
other procedures that have uniformly smaller risk,whatever the unknown 
parameter values.. And yet, people still use it. 
 


